
Physikalisches Institut Exercise 7
Universität Bonn 2. Juni 2008
Theoretische Physik SS 08

Exercises on Elementary Particle Physics II
Prof. Dr. H.-P. Nilles

1. The SUSY invariant action and the Wess-Zumino Model

The most general form of a SUSY-invariant action involving one chiral multiplet
encoded in the left-chiral1 superfield φ is given by

S =

∫
d4x

[∫
d2θd2θ̄K(φ, φ†) +

∫
d2θ W (φ) + h.c.

]
, (1)

where K as well as W are arbitrary functions up to now. The integration ensures
that only the highest components of the superfield occurs in the action. Therefore,
the first term is called the D-term and the second (and third) one the F-term. Note
that K(φ, φ†) is no more chiral as it is assumed to be a real vector superfield. First
of all let us analyze the general action (1) for a while.

(a) Why isW (φ) again a left-chiral superfield assuming φ is? Show that (1) is SUSY-
invariant by applying an infinitesimal SUSY-transformation δ(ε,ε̄) = εQ+ Q̄ε̄.
Hint: Use the explicit form for Q, Q̄ of Ex. 6.1, (c) and (g) as well as the
integration rules for Grassmann variables of Ex. 5.2. The Lagrangian in (1) is
invariant up to a total derivative.

(b) Switch to the left-chiral representation φL(x, θ) = ϕ(x) +
√

2θψ(x) + θ2F (x) of
the left-chiral superfield φ. Determine the Taylor expansion of W (φL) in θ about
the scalar component ϕ of φL. Which terms occur in the action and how do you
have to constrain W in order to obtain a remormalizable action?

Thus, W contains only potential terms of the Lagrangian in (1). Consequently, it
is called the superpotential. The kinetic terms are contained in K. The simplest
choice is K(φ, φ†) = φφ†.

(c) Assuming a left-chiral φ show that φ† is right-chiral. Choosing φ ≡ φL check
that [φL(x, θ)]† transforms in the right-chiral representation.

(d) Using the relations between S and SL,R of in Ex. 6.1, (f)) determine the relations
between φ, φL and φR?
Hint: First, try to relate the expressions for Q, Q̄ in the various representations
by shifting the variable xµ 7→ xµ − iθσµθ̄ in φL. Then use Ex. 6.1, (f).

1It is a common terminology to call a left-(/right-)chiral superfield a (anti-)chiral superfields.
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(e) Evaluate φφ† in the left-chiral representation. Note that this is not chiral, thus,
you have to use (d) to convert representations of superfields into each other.

(f) Combine the results to obtain the complete action S of (1). Why does S not
change under the shift of xµ necessary to convert from the left-chiral to the
normal representation S? Solve the purely algebraic equation of motion of the
auxiliary field F and insert the result into S. Why is the scalar potential

V =
∑

i

∣∣∣∣∂W∂ϕi

∣∣∣∣2 , (2)

where we generalized slightly by considering several superfields φi, i = 1, . . . , n?
In this case we have to consider K(φi, φ

†
i ) =

∑
i φiφ

†
i as well as W ≡ W (φi).

Now, we are prepared to consider the simplest example, the Wess-Zumino model,
defined by

W = 1
2
mφ2 + 1

3
gφ3, K(φ, φ†) = φφ†. (3)

(g) As an additional practice calculate S directly using the left-chiral representation.
Solve the equation of motion for F explicitly. Compare your results to (f).
Determine the scalar potential V (ϕ).

(h) Compare the masses of the fermions and bosons as well as the Yukawa coupling
constant with the bosonic coupling constant. Compare to the results in the
context of the Higgs mass correction in Ex. 5.2.
Hint: Take care of the canonical normalization for the kinetic terms and consider
the equations of motion to fix the right normalization of the mass terms in case
you are uncertain.
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