Exercises on Elementary Particle Physics II Prof. Dr. H.-P. Nilles

1. The Minimal Supersymmetric Standard Model

The <u>Minimal Supersymmetric Standard Model</u> (MSSM) is the easiest extension of the standard model taking supersymmetry into account. The gauge sector consists of a Super Yang-Mills theory V with the standard model gauge group $G_{\rm SM} =$ ${\rm SU}(3) \times {\rm SU}(2) \times {\rm U}(1)$ that is coupled to a matter sector of chiral multiplets. These multiplets contain the SM-matter and the **two** Higgses transforming in the following representations of $G_{\rm SM}$:

quarks
$$U_i = (\mathbf{3}, \mathbf{2}, \frac{1}{6})$$
 $\bar{U}_i = (\bar{\mathbf{3}}, \mathbf{1}, -\frac{2}{3})$ $\bar{D}_i = (\bar{\mathbf{3}}, \mathbf{1}, \frac{1}{3})$
leptons $\mathbb{L}_i = (\mathbf{1}, \mathbf{2}, -\frac{1}{2})$ $\bar{E}_i = (\mathbf{1}, \mathbf{1}, 1)$
higgs $H = (\mathbf{1}, \mathbf{2}, -\frac{1}{2})$ $\bar{H} = (\mathbf{1}, \mathbf{2}, \frac{1}{2})$

The kinetic terms of the MSSM's chiral multiplets are just the canonical ones, $K = \sum_i \Phi_i^{\dagger} e^V \Phi_i$. The superpotential W has to contain terms allowing for the right Yukawa couplings and scalar potential of the Higgses. Furthermore, SUSY is broken by soft SUSY-breaking terms what completes the full Lagrangian of the MSSM.

First, let us analyze the matter sector, namely the superpotential of the MSSM.

- (a) How do the component fields (of e.g. \mathbb{L}_i) transform under gauge transformations? Why is the term $\mathbb{L}H\bar{E}$ gauge invariant?
- (b) What are the general constraints on a superpotential W of a renormalizable theory? Write down the most general, gauge invariant cubic superpotential for the matter superfields. Add also a Higgs mass, sometimes called the μ-term, and determine the Yukawa couplings and scalar potential. Hint: Remember that the superpotential is holomorphic in the chiral superfields by SUSY. Thus, no complex conjugates of fields are allowed. Denote the superpartners of the SM by e.g. H for the Higgs or e_L for the left-handed selectron, i.e. by the "tilded", but same letter.
- (c) Why do we need a second Higgs H in the MSSM? There are various reasons!

(d) Identify the terms that conserve baryon and lepton number and those that do not. Introduce the discrete symmetry of **R-parity** given by $R_p = (-1)^{3B+L+2s}$ as another defining property of the MSSM. Show that it forbids exactly those terms that violate baryon or lepton number. Why are superpartners always produced in pairs? This is a symmetry that does not commute with SUSY!

Now, we turn to an explicit analysis of the Higgs sector in the MSSM and discuss electro-weak symmetry breaking.

(e) Using the R-parity preserving part of the superpotential, find the part of the scalar potential that contains mass terms for

$$\operatorname{scalar}(\bar{H}) = \bar{h} = (\bar{h}^+, \bar{h}^0) \quad \text{and} \quad \operatorname{scalar}(H) = h = (h^0, h^-). \tag{1}$$

(f) Add the D-term contribution from the gauge couplings to the scalar potential:

$$V_{\text{D-term}} = \frac{1}{2}g_1^2 \left(\sum_{\varphi} \varphi^* Y \varphi\right)^2 + \frac{1}{2}g_2^2 \sum_{a=1}^3 \left[\sum_{(\varphi^1, \varphi^2)} \left(\varphi^{1*}, \varphi^{2*}\right) T^a \left(\begin{array}{c}\varphi^1\\\varphi^2\end{array}\right)\right]^2 \quad (2)$$

where $\varphi \in \{h^0, h^-, \bar{h}^+, \bar{h}^0\}$, $(\varphi^1, \varphi^2) \in \{h, \bar{h}\}$, Y is the hypercharge and $T^a = \frac{\sigma^a}{2}$ are the generators of SU(2). Deduce this form for the potential and expand the sums.

Considering the full scalar potential for the Higgs fields in unbroken SUSY, is a breaking of the electroweak symmetry possible? State the conditions on the parameters.

(g) Include the following **soft SUSY breaking** terms in the scalar potential

$$\mathcal{L}_{\text{soft}} = -m_{\text{soft},1}^2 |h|^2 - m_{\text{soft},2}^2 |\bar{h}|^2 - m_3^2 (\bar{h}h + c.c.) , \qquad (3)$$

where $|h|^2 = h^{\dagger}h = |h^0|^2 + |h^-|^2$ and $\bar{h}h = \bar{h}^a h^b \varepsilon_{ab}$. The resulting potential's minimum should break the electroweak symmetry.¹

Show that the scalar potential can be written as

$$V(h,\bar{h}) = m_1^2 |h|^2 + m_2^2 |\bar{h}|^2 + m_3^2 (\bar{h}h + c.c.) + \frac{g_1^2 + g_2^2}{8} \left(|h|^2 - |\bar{h}|^2 \right)^2.$$
(4)

How are m_1^2 and m_2^2 defined?

(h) One requirement for successful electroweak symmetry breaking is a negative $(mass)^2$ term for at least one linear combination of the Higgs fields. Derive an inequality for m_3^2 to achieve this? The second requirement is that the potential should be bounded from below. When is this guaranteed?

¹It is possible to set $\langle \bar{h}^+ \rangle = \langle h^- \rangle = 0$ through a SU(2) gauge transformation. $\langle \bar{h}^0 \rangle$ and $\langle h^0 \rangle$ can be made real and positive by a phase redefinition.

(i) Show that $|\mu|^2$, $m_{\text{soft},1}^2$, $m_{\text{soft},2}^2$ and m_3^2 can be related through m_Z^2 if we require agreement with experimental result for the Higgs vev:

$$v_{\rm SM}^2 = \langle h^0 \rangle^2 + \langle \bar{h}^0 \rangle^2 = \frac{4m_Z^2}{g_1^2 + g_2^2} \approx (246 GeV)^2 \tag{5}$$

Since only the sum of the squares of $\langle h^0 \rangle$ and $\langle \bar{h}^0 \rangle$ is fixed experimentally, the parameter β is introduced to parameterize the remaining freedom. One defines $\tan \beta = \bar{v}/v = \langle \bar{h}^0 \rangle / \langle h^0 \rangle$.

- (j) Check that the relations you found satisfy the constraints in (e).
- (k) After electroweak symmetry breaking, three of the eight real scalar degrees of freedom of the two Higgs multiplets are swallowed to give mass to the Z^0 and W^{\pm} bosons. The remaining physical fields are usually named A^0 (a neutral CP-odd pseudoscalar), H^{\pm} (two charged scalars that are conjugates to each other), H_0 and h_0 (a heavy and a light CP-even scalar filed).

Obtain the mass matrix for H_0 and h_0 . Show that m_{h^0} has an upper bound.

Hint: H_0 and h_0 are a mixture of $Re(h^0) - \langle h^0 \rangle$ and $Re(\bar{h}^0) - \langle \bar{h}^0 \rangle$. You can use $m_{A^0}^2 = 2m_3^2 / \sin 2\beta$ to simplify the notation.