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1. The non-linear Sigma Model & Kaehler Geometry

The most general, globally supersymmetric action Schiral for chiral multiplets Φi was
given in Ex. 7.1 and is defined in terms of two functions K((Φi)†,Φj) and W (Φi).
Renormalizability constrains them to K(Φ†,Φ) = Φ†Φ and a polynomial of degree 3
for W . However, renormalizability is only a meaningful concept for a fundamental or
microscopic theory, i.e a theory that is valid at any energy scale. Hence, considering
Schiral as an effective theory valid only at low energies allows to relax the criterion
of renormalizability.1

In the following consider an arbitrary Kaehler potential K and superpotential W .

(a) Work in the representation S of SUSY to calculate the D-term of K(Φ†,Φ).
Hint: First, you have to expand K(Φ†,Φ) around the scalar components φi.
Then, you should identify the total derivative ∂µ∂

µK(φ†, φ) and discard it.

(b) Argue that the D-term is invariant under

K(Φ†,Φ) 7→ K(Φ†,Φ) + f(Φ) + f̄(Φ†), ∀f holomorphic, (1)

descending to the Kaehler-transformation K(φ†, φ) 7→ K(φ†, φ) + f(φ) +
f̄(φ†). Introduce the Kaheler metric2 as the second derivative of K, i.e.

gī(φ, φ
†) :=

∂2K

∂φi∂(φj)†
(φ, φ†). (2)

In general, g describes an arbitrary Kaehler manifold with complex coordinates
given by the scalars (φi, (φj)†). Historically, theories with scalars taking values on
a curved manifold as the target space are known as non-linear sigma models.
We have proven here one direction of the statement that a globally SUSY-invariant
action requires K to describe a Kaehler geometry and vice versa, i.e. the scalar target
space has to be a Kaehler manifold.
Let us use this Kaehler geometry of the scalar target to geometrize the action further.

1For an effective theory the concept of renormalizability is replaced by considering only terms of leading
order in space-time derivatives. Terms with more than two derivatives are supressed by positive powers of
the length-scale of the fundamental theory.

2A Kaehler metric is just defined as a hermitian metric that can be written (locally) as (2). Therefore,
K is called the Kaehler potential. K is unique up to the transformations (1).
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(c) Show that the only non-vanishing Christoffel symbols are

Γi
jk = gī∂jgk̄, Γı̄

̄k̄ = g ı̄j∂̄gk̄j. (3)

Use this to calculate the non-vanishing components of the curvature tensor
(Rk̄i)

l
j = −(Rik̄)

l
j and (Rik̄)

l̄
̄ = −(Rk̄i)

l̄
̄.

(d) Define the (pullback of the) covariant derivatives of the Kaehler manifold by

Dµψ
i = ∂µψ

i + Γi
jk∂µφ

jψk, Dµψ̄
ı̄ = ∂µψ̄

ı̄ + Γı̄
̄k̄∂µ(φj)†ψ̄k̄ (4)

to rewrite the kinetic term of the fermions. Add the superpotential W to elimi-
nate the auxiliary fields F i by their equation of motion

F i = gī∂̄W − 1
2
Γi

jkψ
jψk. (5)

Finally, insert (5) into the full action to derive its complete form.

Thus, the most general globally SUSY-invariant action of an effective theory reads

Lchiral = gī

(
∂µφ

i∂µ(φj)† − iDµψ
iσµψ̄̄

)
− 1

2

(
∂2W

∂φi∂φj
− Γk

ij

∂W

∂φk

)
ψiψj − 1

2

(
∂2W̄

∂(φ†)ı̄∂(φ†)̄
− Γk̄

īj̄

∂W̄

∂(φ†)k̄

)
ψ̄ ı̄ψ̄̄

+ 1
4
Rijk̄l̄ψ

iψjψ̄k̄ψ̄ l̄ − V (φ, φ†) (6)

with scalar potential given by

V (φ, φ†) = gīFiF
†
̄ = gī ∂W

∂φi

∂W̄

∂(φ†)̄
. (7)

Note the presence of a four-fermion term due to the curved field space of the scalars.

Let us just note that one can consistently couple this action to an effective SUSY-
invariant gauge theory. Then, the minimal coupling is realized as K(Φi, (Φ†e2gV )̄)
and the most general kinetic term of the SUSY Yang-Mills theory is

Lgauge =
1

8g2
Re

(∫
d2θfab(Φ

i)W aαW b
α

)
, (8)

where the gauge kinetic function fab(Φ
i) is introduced. We recover the action of

Ex. 8.2 for fab = τg2

4πi
Tr(TaTb).

2. Coupling a chiral multiplet to Supergravity

Here we summarize just the results of the complicated and lengthy procedure of
coupling the action of Ex. 11.1 to supergravity (SUGRA). This procedure is just the
gauging of global SUSY to a local symmetry.
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The entire Lagrangian depends only on the single function sometimes referred to as
the Kaehler potential given by

G(Φi,Φ∗
j) = −

K(Φi,Φ∗
j)

M2
P

− log

(
|W (Φi)|2

M6
P

)
. (9)

Here, we have made explicit the dependence on the Planck-mass MP that can consi-
stently be suppressed in calculations by putting MP = 1.3 This yields

Vscalar(φ
i, (φj)†) = −e−G

[
3 +Gk

(
G−1

)k

l
Gl

]
M4

P

for the scalar potential of the chiral multiplet with

Gi =
∂G

∂φ†i
, Gj =

∂G

∂φj

, Gj
i =

∂2G

∂φ†i∂φj

.

(a) Check Gi
j = gī, thus the scalar kinetic term can be expressed in terms of G.

(b) Show that this can be written as

Vscalar = eK/M2
P
(
DiWD̄W̄gī − 3 |W |2

)
= F iF †̄gī − 3eK/M2

P |W |2 (10)

using the Kaehler metric gī = ∂i∂̄K, the covariant derivative DiW = ∂iW +
W∂iK/M

2
P and the auxiliary fields of the chiral superfields

F i = eK/2M2
PgīD̄W̄ . (11)

Breaking of local supersymmetry is analogous to the global case realized by a non-
vanishing VEV of the auxiliary field F i. However, the massless Goldstone fermion
present in the global situation, compare Ex. 9.4, is eaten by the gravitino that acquires
a mass in the SUSY-breaking vacuum given by

m3/2 = MPe
〈G〉/2. (12)

The scale of SUSY breaking is defined as the VEV of the auxiliary field F yielding

M2
S = e〈G〉/2

(
〈G〉−1)k

l
〈G〉k MP. (13)

3. Hidden Sector - the Polonyi Model

A hidden sector is defined as sector of the theory that is coupled to the matter or
observable sector only by gravitational interactions. This hidden sector is usually
used for supersymmetry breaking as we will investigate for the Polonyi model.

3The dependence of MP is necessary e.g. to decouple gravity from the theory by MP → ∞. Then,
SUGRA reproduces the results of global SUSY.
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The hidden sector is defined by a single chiral superfield Φ that is a complete gauge
singlet. For simplicity, assume a minimal Kähler potential K(Φ,Φ∗) = Φ∗Φ and the
following Polonyi superpotential

W (Φ) = m2(Φ + β)

with β a dimensionful parameter which we will use later to adjust the vacuum energy
to zero.

(a) Determine the F-term of Φ. For which values of β is SUSY definitely broken?

(b) For which values of β is there a non-SUSY vacuum with zero energy? Calculate
the VEV of φ at those vacua.

Hint: The solution should be 〈φ〉± = ±(
√

3− 1)M and β± = ±(2−
√

3)M .

(c) Calculate the gravitino mass m3/2. Discuss its order of magnitude. Express it in
terms of the SUSY breaking scale M2

SUSY.

(d) Determine the scalar massmφ in terms ofm3/2 by expanding around 〈φ〉. Finally,
calculate the supertrace, including the gravitino.4 Compare to F-term breaking
in the globally supersymmetric case!

This situation changes dramatically in the case of more than one chiral multiplet.
For N chiral multiplets the supertrace reads

STrM2 = 2(N − 1)m3/2. (14)

Thus, the scalar SUSY partners have to be more massive than the fermions in the
multiplet what is required by the experimental data about the observed particle
spectrum up to now. Furthermore, it is possible, due to Ex. 11.3, (c), to obtain a
much smaller gravitino mass m3/2 than the SUSY breaking scale MS. Hence, a mass
splitting between bosons and fermions of the right order of magnitude seems possible.

4The fermion of the superfield Φ is eaten by the gravitino.
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