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Lie groups and Lie algebras are of highest importance for the understanding of the standard
model (SM), grand unified theories (GUT’s) and particle physics in general. The symmetries
given by them imply that the particles are organized into multiplets which are built out of
the representations of the groups. This way many particles have been predicted before their
experimental detection. Therefore the first exercise sheets will deal with simple lie algebras,
their representations and their classification. If you want to learn more about group theory,
we recommend the books given in the bibliography at the end.

1. A Lie group G is roughly a group which at the same time is a differentiable manifold.
The group action · : G × G → G and the inversion ()−1 : G → G are also required to
be differentiable maps. One can first divide them into Abelian and non-Abelian groups,
but the Abelian ones are very easy to handle so our focus lies on the non-Abelian Lie
groups. The simplest of them is SU(2), the group of Special Unitary 2 × 2 matrices.

SU(2) :=
{

U ∈ C2×2
∣

∣ U † = U−1 , det U = 1
}

(a) Show that SU(2) as a manifold is equivalent to a 3-sphere (SU(2) ∼= S3) by
parametrizing U ∈ C2×2 with real parameters and imposing constraints on them.

(b) Since U ∈ SU(2) is invertible, it can be written as U = eiG. G is sometimes called
the generator of U . Show that G is traceless and hermitian. Hint: det exp = exp
tr.

(c) The space of traceless hermitian matrices is a real vector space. (Is it also a complex
space?) Its basis can be choosen as the set of the well-known Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

Hence we can write U = ei~ω·~σ, ~ω ∈ R3. Show that:

U = cos(ω) · 1 + i sin(ω) · (~ω0 · ~σ) where ~ω = ω · ~ω0

Hint: Expand the exponential and use the relation σiσj = δij 1+iǫijkσk . (Compute
this relation if you don’t know it.)
What is the parameter space of ~ω = ω ·~ω0 ? What can you say about its boundary?
After the proper identification again one can see that it is topologically equivalent
to S3.
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Figure 1: Lie group G and its Lie algebra g

(d) The Lie algebra su(2) can be defined as the tangent space at the unit element,
su(2) := T1(SU(2)), see also Figure 1. This means, given a local parametrization
(e.g. ~ω), the elements of su(2) are the first derivatives w.r.t. the parameters. Com-

pute ∂U(~ω)
∂ωi

∣

∣

1
∈ su(2). There is a natural group action on itself, the conjugation,

defined by

fh : SU(2) → SU(2)

fh(g) = hgh−1 .

Now consider g and h to be infinitesimally small. Compute the pullback f ∗ of f on
the Lie algebra su(2). You should find that this is the commutator. Hint: expand
g = eiG and fh(g) to first order in G and H, where h = eiH , and compare. Show
the following relations:

i. [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 Jacobi identity

ii. [σi, σj] = 2iǫijkσk

iii. [A, σi] = 0 , ∀i ⇒ A ∝ 1 Schur’s lemma

The commutator is a natural bilinear skew-symmetric operation on every Lie-
algebra g:

[·, ·] : g × g → g .

Given a real basis Ti of g, one can expand every basic commutator in this basis:

[Ti, Tj] = ifijkTk . (1)

The numbers fijk are called structure constants of g. They determine completely
the properties of g. Normalizing the basis of su(2) to Ti = σi/2, what are its structre
constants?

2. A representation ρ is a homomorphism from the Lie group into the general linear
group of a vector space V

ρ : G → GL(V )

such that ρ(U) · ρ(U ′) = ρ(UU ′) for U, U ′ ∈ G. This of course corresponds to an
homomorphism from the Lie algebra to the group of Endomorphisms of V , which we
will also denote ρ.

ρ : g → End(V ) ,
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which satisfies ρ([u, u′]) = [ρ(u), ρ(u′)] for u, u′ ∈ g. One can also say, if one finds a set
of matrices, which satisfy the commutation relation (1), one has an representation of
g. If there is a nontrivial invariant subspace (W $ V with W 6= {0} and ρ(W ) ⊂ W ),
then ρ is called reducible. Otherwise, if the only invariant subspaces of V are {0} and
V , ρ is called irreducible. Now since all (finite dimensional) representations can be
decomposed into irreducible ones, it will be enough to classify them. We will denote the
dimension of a representation ρ by the dimension of V , i.e. dim(ρ) := dim(V ). Mostly
the representations are just named by their dimensions. In the next exercise we will
construct all irreducible representations (irreps) of SU(2). From now on we will write Ji

for ρ(Ji) if we refer just to one representation ρ.

(a) We make a complex basis change:

J+ =
1

2
(σ1 + iσ2) J− =

1

2
(σ1 − iσ2) J3 =

1

2
σ3 .

Verify the resulting commutators:

[J3, J+] = +J+ [J3, J−] = −J− [J+, J−] = 2J3 .

(b) Now consider the Casimir operator defined as J2 =
∑

i J
2
i . Show that

[J2, Ji] = 0 for i = 1, 2, 3 .

Hint: [AB,C] = A[B,C] + [A,C],B. Now Schur’s lemma tells us, that ρ(J2) =
C(ρ) · 1, where C(ρ) is a number which only depends on the representation ρ.
Verify the relations

J2 = J2
3 − J3 + J+J− = J2

3 + J3 + J−J+ .

(c) In any irrep ρ, we can choose J3 (= ρ(J3)) to be diagonal. Therefore the space
V decomposes into the eigenspaces of J3, V =

⊕

α

Vα, with J3v = αv for v ∈ Vα.

Show that J±v ∈ Vα±1. J± are therefore also called raising and lowering operators.
Also show that for an irrep, V =

⊕

k∈Z

Vα+k for some α and that each Vα is one

dimensional.

(d) Now since we consider finite dimensional representations, there must be a l such
that Vl 6= {0} and Vl+1 = {0}. Determine C(ρ) by the requirement that J+v+ = 0
for v+ ∈ Vl. Hint: Multiply with J− and use the relations from ex.2b). v+ is
then called highest weight state. Therefore we can write V =

⊕

m∈N0

Vl−m with

(J−)mv+ ∈ Vl−m. But there must also be a lowest weight state v− ∈ Vl′ with
J−v− = 0. Show that l′ = −l and determine the dimension of ρ. Which values can
l have?

This result should remind you of the angular momentum in quantum mechanics. From
there we know that a spin l particle appeares in 2l + 1 states, which corresponts to the
dimension of the representation. It comes from the fact, that the Lie algebras su(2) and
so(3) are the same. (But SU(2) is the double cover of SO(3), in other words, SO(3) =
SU(2)/Z2

∼= RP3).
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3. Now that we know all finite dimensional representations of su(2), let us look at some
representations in general. At first, for su(N) there is of course the fundamental N -
dimensional representation, where the group acts just by matrix multiplication.

(a) Show that for a given representation ρ(Ti), there exists the conjugate represen-

tation defined by
ρ̄(Ti) = −ρ(Ti)

∗

If ρ is an D dimensional representation, the conjugate of in is called D̄, if it is not
equivalent to D (In this case the representation is called real). The conjugate of
the fundamental is also called antifundamental.

(b) Show that the adjoint, defined by

Ad(Ti)jk := ifijk

is a representation. Hint: Jacobi identity. Its dimension is the real dimension of
the Lie algebra. Compute dim(Ad) for su(N).
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