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In this exercise sheet we want to take a look at the Lie algebras su(N) and their representation.
However, we will quickly specialize to the su(5) case. We remember that su(N) is the space
of traceless hermitian complex N × N matrices.

1. (a) Give a real basis of su(N) in terms of the elementary N×N matrices (eij)kl := δikδjl

analogously to the Pauli matrices. What is the dimension of su(N)?

(b) Next we define the Cartan algebra h as a maximal set of commuting matrices in
g = su(N)

[X, Y ] = 0 ∀X, Y ∈ h.

It is not hard to see that they form a subspace of su(N). We know that such a set
can be diagonalized simultaneously and so we can choose h to be the set of diagonal
matrices in su(N). The dimension of the Cartan algebra is called rank of the Lie
algebra r := dimh. Find a basis of h for su(N). What is the rank of su(N)? You
should find

h =

{

Hλ :=
∑

i

λieii

∣

∣

∣

∑

i

λi = 0

}

(c) Now we also want to diagonalize the action of h on g/h, which is given by the
commutator. Perform a complex base change (cf. 1st sheet: J1, J2 → J+, J−) to an
eigenbasis of all elements Hλ of h. You should find eij as the eigenbasis and

Ad(Hλ)eij = [Hλ, eij] = (λi − λj)eij .

This equation can also be seen as a map

α• : g/h → h∗

eij → αeij
: (Hλ → (λi − λj)) ,

where h∗ denotes the dual space of h. The points αeij
∈ h∗ are called roots and they

span the root lattice which is isomorphic to Z
r. A basis of h is e.g. given by the set

{

Hi = eii − eN,N

∣

∣i = 1 · · · r = N − 1
}

.

Using the dual basis

{H∗

i } with H∗

i (Hj) = δij ,

we can expand each root in this basis

α = ciH
∗

i where ci = α(Hi) .

Now we can define
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• a positive root as a root α > 0, whose first non-vanishing expansion coefitient ci

is positive.

• a simple root as a positive root α, which cannot be written as a sum of two other
positive roots α′, α′′.

(d) Show that the positive roots of su(N) are the αeij
with 1 ≤ i < j ≤ N and the

simple roots are the αi := αei,i+1
with i = 1 · · · r. Is the set of simple roots a basis

of h∗?

(e) There is a natural scalar product on h∗, which can be computed as follows: For
Hλ = λieii we can write α(Hλ) = αiλi with the additional constraint that

∑

i α
i = 0.

Now we define:

〈α, α′〉 :=
∑

i

αiα′i

The Cartan matrix is defined as

Aij :=
2〈αi, αj〉

〈αi, αi〉
,

with a set αi of simple roots. Compute the Cartan matrix of su(5). The Cartan
matrix can be visualized nicely by the Dynkin diagram. It consists of a small
circle for every simple root αi and AijAji lines joining the circles αi and αj for all
i, j. Draw the Dynkin diagram of su(5).

Although the choice of the basis of the root space h∗ is arbitrary (and therefore the
definition of positive roots etc. pp.), the Cartan matrix and the Dynkin diagram are
unique for each Lie algebra g up to permutations of the simple roots. One finds, that
all informations on the Lie algebra (i.e. the structure constats fijk) are encoded in
the Dynkin diagram. Hence, we can classify all simple Lie algebras by their Dynkin
diagrams. The Lie algebras su(N) are also called An−1, A stands for this type of Dynkin
diagram and n − 1 for the rank.

2. The next task is to construct all irreps of su(N). This works pretty similar to the case of
su(2), just in a bigger setup. Instead of J3 we now diagonalize the cartan subalgebra h

with some basis {Hi}. Hence the representation space V decomposes into simultaneous
eigenspaces of the Hi

V =
⊕

µ

Vµ with Hiv = µ(Hi)v for v ∈ Vµ .

The map µ ∈ h∗ is called the weight of the state v. Note that again we write Hi for
ρ(Hi). The generalization of the raising and loweing operators J± is the space g/h, whose
basis element, corresponding to the root α we will call Eα (e.g. α = αeij

). Recall that

[Hi, Eα] = α(Hi)Eα .

For α > 0 we will call the Eα raising and E−α lowering operator. Note that for a given
α they always appear together.
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(a) Show that for v ∈ Vµ we get Eαv ∈ Vµ+α.

(b) What are the weights of the adjoint representation?

(c) Take the example su(5) and the fundamental representation 5 with the basis of the
Cartan algebra as given above. What are the eigenspaces Vµ and the corresponding
weights µ?

(d) For a representation ρ with weights µi, i = 0 · · ·dim ρ, what are the weights of the
conjugate representation ρ̄?

Now in principle we are ready to construct the representations. For a finite dimensional
representation we will find a state with highest weight Λ, which is annihilated by all
positive root operators. Then we can get all states by acting with the lowering operators
on it. In order to do this, we represent the weights by the Dynkin lables. For a weight
µ we define the Dynkin label

mi :=
2〈µ, αi〉

〈αi, αi〉
.

The Dynkin labels always consist of integer numbers which for a highest weight state are
non negative. It is easy to see, that acting with E−αi

corresponds to subtracting the ith
row of the Cartan matrix from the Dynkin label. Now you can construct all irreducible
representations via the following recipe.

• Start with the Dynkin label m with non negative entries, representing the highest
weight state.

• If the ith entry of the Dynkin label mi is positive, you can get mi new states by
subtracting mi times the ith row of the Cartan matrix.

• Repeat the last step for all new states, for i = 1 · · · r.

• At the end you should arrive at the lowest weight state with only non positive
entries in the Dynkin label.

Every Dynkin label m which you get this way corresponds to a weight µ and therefore
to a eigenspace Vµ of h. In most cases these eigenspaces are one dimensional so you
can find the dimension of the representation by counting the Dynkin labels. One big
exception is the adjoint representation, where the Dynkin label (0, · · · , 0) is occupied r
times.

(e) Construct the 5 and the 10 of su(5) with the highest Dynkin labels (1, 0, 0, 0) and
(0, 1, 0, 0). What are the highest Dynkin labels of the 5̄ and the 10? Also construct
the adjoint, the 24, from the Dynkin label (1, 0, 0, 1). How can you see, that it is
real?

3. Now we want to break the SU(5) GUT to the standard model SU(3)×SU(2)×U(1). We
first decompose the Cartan algebra:

h = h3 ⊕ h2 ⊕ hY

where h3 is spanned by H1 and H2, h2 by H3 and hY is orthogonal on both of them.
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(a) Show that the Hypercharge generator (or some multiple of it) is

Y = −2H1 − 4H2 − 6H3 − 3H4 .

This decomposition also applies to the Dynkin labels of the states in a representation.

(m1, m2, m3, m4) → (m1, m2|m4)

(b) Take the 5̄, the 10 and the 24 and decompose them as follows. Compute also the
Hypercharge of the states. You see, that one gets the matter content of one family
of the SM.

5̄ → (3̄, 1)−2 ⊕ (1, 2)3

10 → (3, 2)1 ⊕ (3̄, 1)−4 ⊕ (1, 1)6

24 → (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (3, 2)−5 ⊕ (3̄, 2)5
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