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We look at the instantons and axions. . .

1. Instantons

We consider instantons of SU(2) gauge theories in the four-dimensional euclidean space
M = R

4. The action is given by

SE
Y M = −

1

2g2

∫

M

d4x trFµνF
µν (1)

where Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]. The gauge field Aµ and the field strength Fµν

are Lie-algebra valued quantities, i.e. Aµ = A a
µ Ta and Fµν = F a

µν Ta respectively with
Ta ∈ su(2) being the traceless anti-hermitean N ×N generators. The generators satisfy
[Ta, Tb] = fabcTc with real structure constants and trTaTb = −1

2
δab. For su(2) we have

Ta = − i
2
σa. A Yang-Mills instanton is a solution to the equations of motion with finite

action. We evalutate the trace in (1) and rewrite the action

1

4g2

∫

M

d4xF a
µν F µνa ≡

1

4g2

∫

M

d4xFµνF
µν . (2)

Furthermore we define the dual field strength ∗Fµν as follows

∗Fµν =
1

2
ǫµνρσF

ρσ. (3)

To find solutions with finite action, we require that F tends to zero at infinity, i.e. A
becomes a pure gauge at the infinity

Aµ = U−1∂µU as x2 → ∞ and U ∈ SU(2). (4)

One can classify fields with this boundary condition. It is the integral over the first
Pontryagin class given by

k = −
1

16π2

∫

M

d4x trFµν ∗ F
µν . (5)

One can show that k takes integer-values.

(a) Show that for

Kµ = −
1

8π2
ǫµνρσ trAν

(

∂ρAσ +
2

3
AρAσ

)

. (6)

that ∂µKµ = − 1

16π2 trFµν ∗ Fµν . Thus, the integral (5) is reduced to an integral
over a three-sphere at the infinity and it counts how many times this sphere covers
the gauge group three-sphere S3 ∼= SU(2). Thus, mathematically one looks at the
third homotopy group π3(SU(2)) = Z of the gauge group.
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(b) Derive the following inequality by completing the square with ∗F

SE
Y M ≥

8π2

g2
|k|. (7)

When is this inequality saturated?

The field configurations with self and anti-selfdual field strength

Fµν = ± ∗ Fµν (8)

are called instanton and anti-instanton respectively. Obviously the action is mini-
mized by these field configurations.

(c) We define

ν = −
1

24π2

∫

S3
∞

dθ1dθ2dθ3ǫ
µνρ tr g∂µg

−1g∂νg
−1g∂ρg

−1. (9)

The θi are some angle variables which parametrize S3

∞
at the infinity. How these

are chosen is irrelevant. Show that ν is invariant under continuous deformations.
It suffices to show that ν is invariant under infinitesimal deformations. Use that
for any Lie group, a general infinitesimal transformation is given by

δg = gδλa(x)Ta ≡ gδT. (10)

One can show that k = ν, i.e the number k is invariant under deformations. The in-
variance under these deformations means that it’s homotopy invariant. The relation
of instantons and homotopy will be briefly explained in the exercise session.

2. Anomalies

Consider a massless fermion coupled to a U(1) gauge boson.

L = ψ̄i/Dψ −
1

4
FµνF

µν

Now perform a local infinitesimal axial transformation:

δψ(x) = iα(x)γ5ψ(x)

(a) Find that the Lagrangian transforms as δL = α(x)∂µj
µ
5
(x) with jµ

5
(x) = ψ̄(x)γµγ5ψ(x)

being the axial current.

(b) Since ψ is massless, show that the axial rotation is a symmetry of the theory. What
does this imply for the classical theory?

(c) In the quantum theory we also have to transform the functional measure. A long
calculation shows that

DψDψ̄ → DψDψ̄ exp

{

i

∫

dx α(x)

(

e2

16π2
ǫµνρσFµνFρσ

)}

.

Now you should find the Adler–Bell–Jackiew anomaly:

∂µj
µ
5

= −
e2

16π2
ǫµνρσFµνFρσ .

2



Figure 1: triangle diagram

(d) Show that this leads to a non-conservation of the difference between left- and right-
handed fermions in an setup with parallel electric and magnetic fields:

∆(NL −NR) =
e2

4π2

∫

d4x ~E · ~B

With NL/R =
∫

d3x ψ̄γ0PL/Rψ .

(e) This type of anomaly appeares only for the axial current. Now imagine the case
of a U(1) gauge theory together with some chiral fermions. Now if they appear
in pairs forming a Dirac fermion, then the U(1) couples to the vector current and
therefore won’t be anomalous. Otherwise, like in the SM, there will usually appear
gauge anomalies which break the classical U(1) gauge symmetry on the quantum
level. The anomaly can also be explained by the triangle diagrams (see fig. 1)
where three gauge bosons couple to a chiral fermion loop. All chiral fermions can
appear in the loop, so one has to sum over them with the respective charges as
coefficients. Show that in the SM the SU(2)L − SU(2)L − Y and the Y − Y − Y
anomalies vanish.
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