Exercises on Group Theory

Dr. Christoph Lüdeling

-Home Exercises-

H 10.1 On Lie algebras and Killing froms

Let \mathfrak{g} be a Lie algebra with basis $\{T_i\}$ and $g_{ij} = (T_i, T_j)$ a matrix representation of the Killing form.

- (a) Let $X \in \mathfrak{Z}(\mathfrak{g})$. What is the matrix form of $\mathrm{ad}(X)$?
- (b) Show: If \mathfrak{g} contains an Abelian ideal, then g_{ij} is degenerate. *Hint: Choose a Basis such that* T_1, \ldots, T_m generate the Abelian ideal. Write g_{ij} in terms of the structure constants and the structure constants in terms of commutators. Show that $g_{1i} = 0$ for all i.
- (c) Bonus: Show that the converse is also true.
- (d) Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ with \mathfrak{g}_i simple. Show that the Killing form is block-diagonal.
- (e) Let $\mathfrak g$ be semisimple. Show that every generator can be written as a sum of commutators.

H 10.2 $\mathfrak{su}(2)$ representations

- (a) Show that the adjoint representation of $\mathfrak{su}(2)$ is the J = 1. Identify the states $|J = 1, M = \pm 1, 0\rangle$ in terms of the generators.
- (b) Consider the representation tensor product $(J = 1) \otimes (J = 1/2)$. Show first that $J_3|j_1, m_1\rangle \otimes |j_2, m_2\rangle = (m_1 + m_2)|j_1, m_1\rangle \otimes |j_2, m_2\rangle$. Decompose the product space into irreducible subspaces and identify the states.
- (c) We normalize the Hilbert space states as $\langle j, \alpha | j, \beta \rangle = \delta_{\alpha\beta}$, where α and β stand for other quantum numbers and j is the highest weight. Show that this implies orthogonality of the other states, i.e. $\langle j k, \alpha | j k', \beta \rangle \sim \delta_{\alpha\beta} \delta_{kk'}$.

(d) Within one irreducible representation we use the normalization $\langle j, m | j', m' \rangle = \delta_{mm'}$. Show that the normalization constants in

$$J_{-}|j-k\rangle = N_{j-k}|j-k-1\rangle, \qquad J_{+}|j-k-1\rangle = N_{j-k}|j-k\rangle$$

are indeed the same.

(e) Convince yourself of the recursion formula

$$N_{j-k}^2 = j - k + N_{j-k+1}^2 \,.$$

Show that $N_{j-k} = \frac{1}{\sqrt{2}}\sqrt{(2j-k)(k+1)}$ is a solution with the boundary condition $N_j = \sqrt{j}$.

H10.3 Complexifications

- (a) What is the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$?
- (b) Show that $\mathfrak{sl}(2,\mathbb{C})$ is the complexification of $\mathfrak{su}(2)$, i.e. $\mathfrak{sl}(2,\mathbb{C}) = \mathfrak{su}(2) \otimes_{\mathbb{R}} \mathbb{C}$.

H10.4 Roots and the Cartan algebra

We consider a Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h} spanned by the Cartan generators H_i . The remaining generators $E_{\alpha} \in \mathfrak{g}/\mathfrak{h}$ satisfy $[H_i, E_{\alpha}] = \alpha_i E_{\alpha}$. We use the scalar product $\langle A, B \rangle = k \operatorname{tr}(A^{\dagger}B)$. Note that the action considered is always the adjoint, $\operatorname{ad}(A) \cdot B = [A, B]$.

- (a) Show that for Hermitean Cartan elements, $H = H^{\dagger}$, we find that H is self-adjoint with respect to the scalar product $\langle \cdot, \cdot \rangle$.
- (b) Show that $[H_i, [E_\alpha, E_\beta]] = (\alpha_i + \beta_i)[E_\alpha, E_\beta].$
- (c) Show that $[E_{\alpha}, E_{-\alpha}]$ is in the Cartan algebra. Show further that $[E_{\alpha}, E_{-\alpha}] = \sum_{i} \alpha_{i} H_{i}$.
- (d) Show that for a fixed root α the generators

$$E_{\pm} = \frac{1}{|\alpha|} E_{\pm\alpha} , \qquad E_3 = \frac{1}{|\alpha|^2} \sum_i \alpha_i H_i$$

form a closed and properly normalized $\mathfrak{su}(2)$ subalgebra.