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2.1 The SUSY Algebra and the Chiral Representation (16 credits)

The SUSY Algebra relates in a non-trivial way the Poincaré group with generators
P,,M,,, with and Internal symmetry group with generators 7, by the inclusion of
antlcommuting generators @), the demand of a Z, graded structure for it, and the

fullfillment of the Coleman-Mandula Theorem for the subset {P,, M,,,Q,}. The
Qa,Qy = (Qp)" transform in the Lorentz group representations (0, 1) and (3,0)
respectively. The Algebra reads

{QOmQﬁ'} = 2( u)aﬁp [QOMP]:O (1)
[ uwQa] = (UMV) Qﬂa [ .WMQ} (UW) ﬁQﬂ

(a) The SUSY algebra can be viewed as a Lie Algebra by introducing Grassmann
variables 0,,6;. Check that this new algebra is given by the commutators

(6Q).(QB)] = 2(60"0)F,. [P, (6Q)] = [P, (D)) = 0. ¢
(1 credit)
(b) Define the corresponding group element associated to the Lie Algebra (2) as
S(a*, o, @) :=exp [aQ + Qa — ia"P,] . (3)
Show that S(a*, o, @)S(b*, 3, 3) is again a group element. (2 credits)

(c) Multiplication of group elements induces a motion in the parameter space, called
the superspace, with coordinates (z*,6,6). This serves to define a represen-
tation of the SUSY group on superfields ®(z*,0,0) as

s(a*, a,a): (2*,0,0) — (2 + a" —iac"d +ifc"a,0 + a,0 + &),
S(a", a,@)®(x",0,0) = &(z" +a" —iac" +ibo"a,0 + a,0+ ). (4)
Use an infinitesimal transformation to show that the SUSY algebra on super-
fields ®(z#, 0, 0) is realised by
Po=i0y  Qa=0y—i(0"),50°0,, Q= —0;+1i6(c"),50, (5)
(2 credits)

(d) Check that (4) is fulfilled for linear combinations and products of superfields.
In addition show that the defined operators (5) form a representation of the
SUSY algebra by explicitly verifiying the (anti-) commutation relations (1).
This tell us that (4) defines a linear representation of (1), i.e. on a vectorspace.
(2 credits)



(e) Define a (SUSY) covariant derivative D, by
Da(é(e,g)q)) - 5(6,€) (Daq))7 (6)

where the infinitesimal transformation § = €Q + Q€ comes from the S(0, ¢, €)
expansion. This definition implies that D® transforms as a superfield too. Show
that the following derivatives are covariant:

Dy = 0o + i(au)aﬁ'éﬁaw (7)
(2 credits)
(f) Next define left and right chiral representations by
Sp(a", o, @) := exp [aQ — ia" P,] exp [Q@] , (8)
Sg(a", a,@) := exp [Qéz — ia“P,J exp [aQ)] .
Consider the left representation Sz, obtain its relation with the representation
S in (3). Check that Sy (a*, o, @)SL(b*, 3, 3) is a group element. (2 credits)
(g) A superfield in the left-chiral respresentation is defined as
Sp(a*, a,@) [¢r(a",0,0)] = ¢p(a# + o + 2i00"a,0 + ., 0 + @). (9)
Determine the representations of the SUSY generators Q;, and Q. (2 credits)

(h) Check that the following operators define covariant derivatives

Dia = 8+ 2i(0"),40%9,, (10)

Diy = —0
by computing the commutator with the SUSY transformation S;. (1 credit)

(i) Define now chiral superfields by the constrains

D®(z,0,0) = 0, for left-chiral, (11)
D®(x,0,0) = 0, for right-chiral.

This definition is independent of the representation. Work in the representation
S of (3) to show that the component fields are not constrain by differential
equations in z. Choose the left-chiral representation D® = D¢y, to deduce
the general form of a left chiral superfield. (2 credits)

Hint: Make a Taylor expansion in 0, to define the component fields of ®.
(j) Consider the infinitesimal SUSY transformation (¢ of a left-chiral superfield
¢r. How do the component fields of ¢ transform? (2 credits)

Hint: Use the left-chiral representation of the SUSY generators Qp, and Q;, and
assume that the transfromation is small: eote =~ 0.



