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As you might know by now, SUSY has many appealing features. For example, it leads to a
unification of the gauge couplings and it alleviates fine-tuning by protecting the Higgs mass from
quadratic corrections. Unfortunately, no experiment has detected any superpartner of the known
particles so far. This means that SUSY must necessarily be broken at the energies accessible to
current experiments. The breaking should, however, be such that the good features of SUSY are
maintained.
In this exercise we look at spontaneously broken SUSY, which means that vacuuum does not
respect the symmetry of the Lagrangian. In the first exercise we will investigate how SUSY can
be broken and then apply one SUSY breaking scheme in the second exercise.

5.1 SUSY Breaking (7 credits)

As mentioned in the introductory text, SUSY is broken spontaneously iff (meaning if and only if)
Qα 6= 0. This, in turn, is equivalent to the existence of an |X〉 such that 〈X|Qα|0〉 6= 0, or

〈0|{Qα, X̂}|0〉 = 〈δ(ε,ε̄)X̂〉 6= 0, (1)

where X̂ is any operator in the theory and 〈δ(ε,ε̄)X̂〉 denotes the VEV of the SUSY variation of
the operator X̂. We will consider the classical limit at tree level (without quantum corrections)
in which 〈δ(ε,ε̄)X̂〉 = δ(ε,ε̄)X for a classical field X.

(a) While SUSY should be broken, Poincaré invariance should be maintained. Which operators
X̂ can be allowed to develop a VEV 〈X̂〉 without breaking the Poincaré invariance of the
vacuum? (1 credit)

(b) Look at the SUSY variations of all fields in the chiral multiplet, which you calculated on
exercise sheet 2 in 2.1)j). What are the consequences of the vanishing of δ(ε,ε̄)ψ for SUSY
breaking and for the potential V = |F |2? When is SUSY broken? (2 credits)

(c) Now look at the vector multiplet with component fields V µ, λ, and D. Their SUSY variations
are

δ(ε,ε̄)V
µ = −iλ̄σ̄µε+ iε̄σ̄µλ, δ(ε,ε̄)λ = σ̄µνεFµν + iεD, δ(ε,ε̄)D = −εσµDµλ̄−Dµλσ

µε̄ (2)

where Dµ denotes the covariant derivative. Perform the same analysis as in (b). Note that in
this case the potential is V = 1

2D
2.

(2 credits)

(d) Alternatively, we can look at the SUSY algebra itself. Express the Hamiltonian H in terms
of Qα and Q̄α̇ and infer an inequality for the energy E on the spectrum of any SUSY theory.
When is the inequality an equality? The results from b) and c) are reproduced by using the
potential V = |F |2 + 1

2D
2 for a chiral and a vector-multiplet. (2 credits)

As we have seen in this exercise, SUSY is broken iff the auxiliary fields develop a non-zero VEV.
For this reason, we distinguish F-term and D-term SUSY breaking, depending on whether 〈F 〉 = 0
or 〈D〉 = 0. As we have seen in the last part of the exercise, having 〈V 〉 = 0 for unbroken SUSY is
a generic feature of the SUSY algebra. In the next exercise, we will investigate F -term breaking
and the next exercise sheet will deal with D-term breaking.
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5.2 F -term breaking in the O’Raifeartaigh model (10 credits)

In the O’Raifeartaigh model, there are three (left-)chrial superfields X,Y , and Z. Let us denote
the component fields of X by (x, ψx, Fx) (and analogously for Y and Z). As we have seen on
exercise sheet 3, the kinetic terms of the fields arise from the highest component (the D-term) of
the Kähler potential. We take again the easiest choice for K, such that

LD = K(X,Y, Z)|θ2θ̄2 = (X†X) + (Y †Y ) + (Z†Z), (3)

where the vertical bar means restriction to the highest component. Furthermore, this term con-
tributions quadratic terms of the auxiliary fields like |F•|2. The superpotential is given by

W (X,Y, Z) = λX(Z2 −M2) + gY Z, (4)

where λ, M , and g are real parameters.

(a) Calculate the scalar potential V (x, y, z) by extending the results of exercise 3.3)c), i.e.

V (x, y, z) = |Fx|2 + |Fy|2 + |Fz|2 and F ∗ϕ = −∂W (x, y, z)
∂ϕ

for ϕ = x, y, z. (5)

(1 credit)

(b) Show that the VEVs of Fx, Fy, and Fz cannot vanish simultaneously. Hence the O’Raifeartaigh
model implements F -term SUSY breaking. (1 credit)

(c) Check that the minimum of the potential V (x, y, z) is at y = z = 0 when M2 < g2

2λ2 . (Checking
that it is indeed a minimum is rather involved.)

(2 credits)

(d) Calculate the masses of the scalars. To do so, expand the fields in terms of fluctuations around
their background value defined by their VEVs (e.g. x → 〈x〉 + x). Insert the expansion into
the potential and extract the terms quadratic in the fields. In order to diagonalize the mass
matrix for z, use the ansatz z = 1√

2
(a+ ib). (3 credits)

(e) Calculate the masses of the fermions. To do this, combine ψy and ψz into a Dirac fermion
ψD:

ψD =
(
ψy
ψz

)
.

As the VEV of x is undetermined, the term xψzψz does not constitute a mass term.
(3 credits)

2


