Exercises on Theoretical Particle Physics II Priv.Doz.Dr. S.Förste

Due 21/06/2010

8.1 The MSSM Higgs Sector

Recall the study you performed in exercise 7.2, now we will analyse further properties on the MSSM Higgs sector.

(a) Include the following **soft SUSY breaking** terms in the scalar potential

$$\mathcal{L}_{\text{soft}} = -m_{\text{soft},1}^2 |h|^2 - m_{\text{soft},2}^2 |\bar{h}|^2 - m_3^2 (\bar{h}h + c.c.), \qquad (1)$$

where $|h|^2 = h^{\dagger}h = |h^0|^2 + |h^-|^2$ and $\bar{h}h = \bar{h}^a h^b \varepsilon_{ab}$. The resulting potential's minimum should break the electroweak symmetry.¹

Show that the scalar potential can be written as

$$V(h,\bar{h}) = m_1^2 |h|^2 + m_2^2 |\bar{h}|^2 + m_3^2 (\bar{h}h + c.c.) + \frac{g_1^2 + g_2^2}{8} \left(|h|^2 - |\bar{h}|^2 \right)^2.$$
(2)

How are m_1^2 and m_2^2 defined?

- (b) One requirement for successful electroweak symmetry breaking is a negative $(mass)^2$ term for at least one linear combination of the Higgs fields. Derive an inequality for m_3^2 to achieve this? The second requirement is that the potential should be bounded from below. When is this guaranteed? (3 credits)
- (c) Show that $|\mu|^2$, $m_{\text{soft},1}^2$, $m_{\text{soft},2}^2$ and m_3^2 can be related through m_Z^2 if we require agreement with experimental result for the Higgs vev:

$$v_{\rm SM}^2 = \langle h^0 \rangle^2 + \langle \bar{h}^0 \rangle^2 = \frac{4m_Z^2}{g_1^2 + g_2^2} \approx (246 GeV)^2 \tag{3}$$

Since only the sum of the squares of $\langle h^0 \rangle$ and $\langle \bar{h}^0 \rangle$ is fixed experimentally, the parameter β is introduced to parameterize the remaining freedom. One defines $\tan \beta = \bar{v}/v = \langle \bar{h}^0 \rangle / \langle h^0 \rangle$. (3 credits)

- (d) Check that the relations you found satisfy the constraints in 8.1(b). (2 credits)
- (e) After electroweak symmetry breaking, three of the eight real scalar degrees of freedom of the two Higgs multiplets are swallowed to give mass to the Z^0 and W^{\pm} bosons. The remaining physical fields are usually named A^0 (a neutral CP-odd pseudoscalar), H^{\pm} (two charged scalars that are conjugates to each other), H_0 and h_0 (a heavy and a light CP-even scalar filed).

Obtain the mass matrix for H_0 and h_0 . Show that m_{h^0} has an upper bound. (4 credits)

Hint: H_0 and h_0 are a mixture of $Re(h^0) - \langle h^0 \rangle$ and $Re(\bar{h}^0) - \langle \bar{h}^0 \rangle$. You can use $m_{A^0}^2 = 2m_3^2 / \sin 2\beta$ to simplify the notation.

 $(10 \ credits)$

 $(2 \ credits)$

¹It is possible to set $\langle \bar{h}^+ \rangle = \langle h^- \rangle = 0$ through a SU(2) gauge transformation. $\langle \bar{h}^0 \rangle$ and $\langle h^0 \rangle$ can be made real and positive by a phase redefinition.

8.2 Evolution of the gauge couplings

 $(11 \ credits)$

The running of the coupling constants of a general non-abelian gauge theory, comming from the renormalization group equations is given by

$$\frac{8\pi^2}{g^2(q^2)} = \frac{8\pi^2}{g^2(\Lambda^2)} + b_0 \log(q^2/\Lambda^2),\tag{4}$$

where Λ is the cutoff scale of the theory and q is a typical momentum transfer in a process. The coefficient b_0 depends on the parameters: cuadratic casimir c_i in a given representation $(\operatorname{tr}(T^aT^b) = c_i\delta^{ab})$, number of fermions in the *i*th representation $n_f^{(i)}$ and number of bosons in the *i*th representation $n_b^{(i)}$. b_0 is given by

$$b_o = \frac{11}{3c_A} - \frac{2}{3c_i n_f^{(i)}} - \frac{1}{3c_i n_b^{(i)}}$$
(5)

For the group SU(N), the quadratic casimir in the adjoint $f^{abc}f^{bcd} = c_A\delta^{ab}$ is $c_A = N$. For the fundamental representation $c_{fund.} = 1/2$. In the case of U(1) field, the same formula applies with $c_A = 0$ and a state of charge q_i has $c_i \sim q_i^2$.

- (a) Consider the case of a non-supersymmetric SU(N) theory with N_f fermions in the fundamental, and N_f fermions in the antifundamental, which is the value of b_0 ? Now consider the addition of a supersymmetry to the previous theory, which is the value of b_0 in this case? (2 credits)
- (b) Compute the value of b_0 for the three different gauge groups of the Standard Model, with a number of generations N_G . Take for the c_i of the $U(1)_Y$ the normalization $c_i = 3/5q_i^2$, why we follow this convention? (3 credits)
- (c) Consider the MSSM with N_G number of generations, obtain the new values of the b_0 coefficients for the three gauge factors. Specify to $N_G = 3$, compare the asymptotic behaviour of the SU(2) factors of MSSM and the SM. (4 credits)
- (d) Take into account the gauge coupling unification for SU(5), working for the SM using the measured values for the couplings SU(2) g_2 and U(1) g_1 compute the value of the unification scale M_Z . Determine the value of the coupling g_3 at this scale. (1 credit)
- (e) Now work for the MSSM, determine using initial values for g_2 and g_1 , the scale at which the gauge couplings meet. (1 credit)