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After we have obtained the two-point correlation function of the free boson on Exercise
sheet 5, we now calculate the two-point correlation function and the conformal weights of
a free fermion. In the second exercise, we examine the linear dilaton CFT, which is an
extension of the CFT of a free boson with a coupling to the worldsheet gravity.

Exercise 7.1: Two-point function for free fermions (14 credits)

The action for a free Majorana fermion reads

S =
1

4πg

∫
dx0dx1

√
|h| (−i)Ψγα∂αΨ , (1)

where g is a constant, Ψ = Ψ†γ0 , hαβ = diag(1,−1) , and the gamma matrices are given
by

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 1
−1 0

)
(2)

(a) What is the Majorana condition on the components ψ , ψ of Ψ? (1 credit)

(b) Perform a Wick rotation x1 7→ ix1 and define z := x0 + ix1 to rewrite the action as

S =
1

4πg

∫
dzdz

(
ψ(z, z)∂ψ(z, z) + ψ(z, z)∂ψ(z, z)

)
. (3)

(3 credits)

(c) Calculate the equations of motion for ψ and ψ. What do they imply? (1 credit)

(d) By imposing invariance of the action (3) under conformal transformations, calculate
the conformal weights (h, h) of ψ and ψ. (2 credits)

(e) Next we want to calculate the correlator 〈Ψi(z, z),Ψj(z
′, z′)〉 where i, j = 1, 2 label

the components of Ψ. To do so, express the kinetic terms of the components in (3)
as a matrix Aij and write down the differential equation for the Green’s function.

(2 credits)
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We claim that the Green’s function Gij(z, z
′) for the equation obtained in (e) is given by

G = 2g

(
∂ 1
z−z′ 0

0 ∂ 1
z−z′

)
, (4)

(f) Prove this using the techniques you already used in Exercise 5.2 (e) for the bosonic
case. (5 credits)

Exercise 7.2: The Linear Dilaton CFT (6 credits)

In this theory, a linear dilaton term Φ(X) is introduced which couples the boson X to
worldsheet gravity. The corresponding action is

SΦ =

∫
d2σΦ(X)R(2) (5)

with Φ(X) = QX where Q is a constant. For a flat worldsheet, the quantization of X
proceeds as before. The linear dilaton coupling shows up in the energy-momentum tensor,
which reads

TQ(z) =
1

2

(
:∂X(z)∂X(z) : + Q̃ ∂2X(z)

)
(6)

where Q̃ is a constant related to Q.

Calculate the OPE of TQ with itself, TQ(z)TQ(w). Show that it has the correct form and
read off the central charge. (6 credits)
Hint: For : ∂X(z)∂X(z): : ∂X(w)∂X(w): you may use the result from the lecture. Use
Wick’s theorem and the result from Exercise sheet 5 to evaluate the other contractions.
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