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1. Overview 20 points

(a) Give three reasons why we think that the Standard Model of particle physics is incom-
plete. (3 points)

(b) Which cosmological parameters can be found from measuring the primordial abun-
dances for light elements? (1 point)

(c) What are the properties of an axion-like particle? (1 point)

(d) Why do we think that there is dark matter in the universe? What are the properties
of any dark matter candidate? (2 points)

(e) State the hierarchy problem. (1 point)

(f) The CMB spectrum gives a picture of a particular moment in the history of the uni-
verse. What did happen at that particular moment? (1 point)

(g) What is a domain wall? (1 point)

(h) Name three dark matter candidates. (1 point)

(i) What is the particle content of the standard model, and what is the corresponding
gauge symmetry? (2 points)

(j) How does the particle number density scale with the temperature (i) in the non-
relativistic case (T ≪ m) and (ii) in the ultra-relativistic limit (T ≫ m). (2 points)

(k) What is the physical reason for the freeze-out of a given particle species in the early
universe? (1 point)

(l) What are the assumptions behind the FRW metric? (1 point)

(m) Give a motivation for considering Grand Unified Theories (GUTs). What are the usual
drawbacks of these models? (2 points)

(n) Argue why a baryon asymmetry is needed in the early universe? (1 point)
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2. Toy Model for Baryogenesis 20 points

Consider a real scalar boson X and four fermions fi with the following interaction terms:

L∆b = X
(
af1f2 + bf3f4 + cf1f4 + df3f2

)
+ h.c. , (1)

where we assume that the fermion bilinears have a net baryon number, and a, b, c, d are
dimensionless complex couplings.

(a) The couplings a, b, c, d are not necessarily real. Consider phase redefinitions of the form

f ′
j = eiαjfj ,

where j ∈ {1, 2, 3, 4} is not summed. This redefinitions can also be used to make some
of the couplings in the Lagrangian real. The physically meaningful phases are those
you can not transform away. (5 points)

(b) Show that at tree–level, the partial widths of X → f1f2 and X → f2f1 are the same,
even if f1 and f2 have non–vanishing masses. Hint: You do not need to compute the
kinematical factors. (3 points)

(c) Assume that mX > mf3 +mf4 . Draw a one–loop diagram for X → f1f2 involving the
couplings b, c and d (or their complex conjugates). (4 points)

(d) Show that the interference between this diagram and the tree–level diagram has a
contribution that is sensitive to the phase(s) you identified in (b). (4 points)

(e) Compare this result to what you expect for the loop corrected process X → f2f1 and
argue why C and CP are violated. (4 points)

3. Scalar Field Dynamics 15 points

The action of a real scalar field ϕ with potential V (ϕ) is given by

Sϕ =

∫
d4x

√
−g

[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
with metric gµν and g = det(gµν).

(a) By varying the action with respect to ϕ, derive the Klein-Gordon equation,

�ϕ = V ′ .

(3 points)

(b) First show that the variation of the metric determinant yields

δg = −ggµνδg
µν

(4 points)
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(c) By varying the action with respect to gµν , show that the stress-energy tensor associated
with the scalar field is

Tµν = ∂µϕ∂νϕ− gµν

(
1

2
∂λϕ∂λϕ− V (ϕ)

)
.

(3 points)

(d) Assuming the flat FRW metric for gµν(t) and restricting to the case of a homogeneous
field, ϕ = ϕ̄(t), show that the stress-energy tensor takes the form of a perfect fluid.
Show that the equation of state of the fluid is

wϕ ≡ pϕ
ρϕ

=
1
2
˙̄ϕ− V (ϕ̄)

1
2
˙̄ϕ+ V (ϕ̄)

.

(3 points)

(e) What is the scaling of the energy density, ρϕ(a) in the limits 1
2
˙̄ϕ ≪ V and 1

2
˙̄ϕ ≫ V ?

Give a physical interpretation of each case. (2 points)

4. SU(5) GUTs and Proton Decay 18 points

Consider an SU(5) Grand Unified Theory (GUT). The smallest irreducible representations
are the (anti-) fundamental 5 (5), the two index antisymmetric 10 and the adjoint 24.
By considering the decompositions of certain products of these, we see that any of the
following products

(24)3 , (24)2 , (24 · 5 · 5) , (24 · 10 · 10) , (10 · 5 · 5) , (10 · 10 · 5) , (2)

can be made gauge invariant by a suitable contraction of the gauge indices for the rep-
resentations involved in it. In terms of GSM = SU(3)C × SU(2)L × U(1)Y , the adjoint
decomposes as

24 → (1,1)0 ⊕ (1,3)0 ⊕ (8,1)0 ⊕ (3,2)− 5
6
⊕ (3,2) 5

6
. (3)

(a) Give the branchings for the 10 and the 5 in terms of GSM representations and ex-
plain how one can get one family of particles out of these two SU(5) representations.
(3 points)

(b) The Higgs field originates from a 5-plet, so that in addition to the Higgs doublet H
one also gets a color tripet T . From the Yukawas at the SU(5) level

10M10M5H 10M5M5H ,

identify all couplings involving T . Sketch how T can mediate the decay of the proton.
The subindices H and M are used to distinguish between Higgs and matter fields.
(6 points)
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(c) Assume that SU(5) is broken to GSM by a VEV of a scalar field transforming in the
adjoint representation. Use the decomposition given in (3) to identify the vector bosons
which get massive after symmetry breaking. (Hint: Consider the kinetic term for the
adjoint scalar) (3 points)

(d) Consider the kinetic terms for the matter fields (remember that such terms contain
covariant derivatives). Find all couplings between matter fields and the massive vector
bosons. Do these couplings respect baryon number? (6 points)

5. The Flatness Problem 12 points

Consider an FRW universe dominated by a perfect fluid with pressure p = wρ with constant
w. Remember the definition of the energy density parameter

Ω(t) = ρ(t)

(
3H2

8πG

)−1

.

(a) Show that

dΩ

d ln a
= (1 + 3w)Ω(Ω− 1) . (4)

(6 points)

(b) How does Ω(a) evolve for Ω = 1 + ϵ, 1, 1− ϵ and w = 0,−1. Illustrate your findings.
For any of these cases, explain how big was ϵ at earlier times compared to its value
today. (6 points)

6. Stable relics out of Equilibrium 15 points

Assume there is a stable particle χ of mass mχ, which never was in equilibrium with the
thermal bath due to its very small production cross section. The scaled abundance for χ
is governed by the Botzmann equation

dYχ

dx
= −

1.32MPl
√
g∗mχ

x2
⟨σv⟩

[
Y 2
χ −

(
Y eq
χ

)2]
, (5)

were x = mχ/T, Yχ = nχ/s with s being the entropy density, and g∗ is the effective number
of relativistic degrees of freedom.

1. Rewrite this equation using the explicit expressions for s and for the equilibrium
density Y eq

χ . Hint: Assume T ≪ mχ, i.e. non–relativistic χ particles. (3 points)

2. Assume that at some initial temperature Ti ≪ mχ we have nχ(Ti) = 0. At least
initially the annihilation term on the right–hand side of eq. (5) can then be neglected.
Assume further that ⟨σv⟩ = a is a constant. Show that the Boltzmann eq. can then
be written as

dYχ

dx
= κxe−2x , (6)

where κ is a (positive) constant. (4 points)
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3. Solve eq. (6) explicitly. (4 points)

4. Plot both Yχ and Y eq
χ and discuss the range of validity for the solution you just

obtained. Which kind of particles could feature a relic abundance that fits this
model? (4 points)
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