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Among many important applications, Lie algebras and Lie groups are used to describe
gauge interactions in particle physics models. This exercise sheet is devoted to study the
Lie algebra of a particular class of those, namely special unitary (SU(N)) groups. As you
already know, SU(2) plays an important role in the description of spin % particles as well
as the weak interactions, SU(3) is compulsory for quantum chromodynamics and SU(5) is
a very popular alternative for a grand unified theory (GUT), just to cite some examples.
In the first exercise we attempt to make contact with the intuitive picture and for that
we take the simplest example SU(2). The second exercise deals with the general case.
Selected references on group theory can be found at the end of the sheet.

1.1 The Lie algebra of SU(2) 9 points

Consider the group
SU(2):={U e GL(2,C) |U'=U", detU =1} .

(a) Show that SU(2) as a manifold is equivalent to a 3-sphere (SU(2) = S3). (3 points)
Hint: Find an equation constraining the parameter space of U to S® as a submanifold
in R*.

The previous exercise shows that SU(2) is an example of a Lie group, i.e. a group which
admits the structure of a differentiable manifold.

(b) Introduce spherical coordinates on S® to infer
U(w,0,¢) = cos(w) -1 + isin(w) - (Jy - F) (1)

where &y = (sin 0 cos ¢, sin 0 sin ¢, cos )7 € S? and the o; are the Pauli matrices defined

by
(01 (0 =i (1 0
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(3 points)



(c) Consider the three dimensional vector & = w - y. What is its parameter space? What
can you say about its boundary? After the proper identification one can see that the
space defined by @ is topologically equivalent to S3. (1 point)

(d) Use eq. (1) to show that every U € SU(2) obeys the differential equation

Ow
Integrate this to determine the solution
U(&) = exp{id - 7},
compute the following quantities:

U
0w,

T; fori=1,2,3

and finally show that they satisfy the commutation relation [T}, T}] = 2i€;;xT. (2 points)

Even though it was a very simple example, the previous exercise shows that by introducing
a set of coordinates and by using the differentiability of the manifold, we can parameterize
any element of SU(2) in terms of very local data (the tangent vectors T;).

In general, given the coordinates z* for a Lie group G, we can define the basis

_ 9y

T, .= :
o' | g

for the tangent space g := T7G at the identity element 1 € G. The vectors T; are called the
generators of the Lie algebra g. It is known that in a certain vicinity of the identity,
the elements of G' can be written in the form €' as we can see in the case of SU(2).

In more formal terms, a Lie algebra is vector space with a binary operator [-,-] : gx g — g.
Given a,b,c € g and XA € R the operator must satisfy

e [\a,b] = Aa,b] (linear),
e [a,b] = —[b, a] (skew-symmetric),
e [a,[b,c|]] + [b,[c,al] + [c, [a,b]] = 0 (Jacobi identity).

Note that in the previous SU(2) example we have taken the bilinear [-, -] to be the standard
commutator.
2.1 Roots, Cartan matrix and Dynkin diagram of su(INV) 12 points

Consider the space of all N x N matrices and regard it as a Lie algebra gl(N). We choose
as a basis the elements e,, with components (eqp)ij = dai0b;-



(a) Verify the multiplication rule and thus the commutator operation on the algebra
(1 point)

€abCed = eadébc ) [ealn ecd] - eadébc - ecbéad'

(b) Let us now restrict to the case of SU(N). Take an arbitrary element U = ™. Which
properties does M need to satisfy? Use this result to write a basis for the generators
of su(N). What is the dimension of the algebra? (2 points)
(Hint: det e = ™M)

(c) The Cartan algebra b is defined as the maximal commuting subalgebra of the Lie
algebra. Its dimension is called the rank of the Lie algebra. Give a possible choice for
the Cartan subalgebra of su(/N). What is the rank r of su(N)? (1 point)

(d) Now we want to diagonalize the Cartan algebra in the adjoint representation, which
acts by the commutator

ad h(g) = [h, g]
Perform a (complex) basis change of su(N)/h to an eigenbasis of h. You should find,
[y eab] = (Aa — Ab) €ap » (2)
with h =), \ies;. (1 point)

We can regard eq. (2) (for ey, fixed) as a prescription for how to associate a number (A, —\)
to each h € h. We can write this prescription as

Qe,, (h) = Ag — A

We call a., a root. The roots live in the dual space of the Cartan subalgebra b. This
dual space is commonly denoted by b*.

Let ay ..., be a fixed basis of roots so every element of h* can be written as p =) . ;.
We call p positive (p > 0) if the first non-zero coefficient ¢; is positive. Note, that the
basis roots «; are positive by definition. If the first non-zero coefficient ¢; is negative, we
call p negative. For p,o € h*, we shall write p > o if p — o > 0. A simple root is a
positive root which can not be written as the sum of two positive roots.

(d) Now choose a basis «a; for the root space of the form
Oél(h) :>\i_>\i+17 1= 172,...,N—1.

Verify that these roots are a basis and that they are positive with ay > as > ... > ay_1.
Show that these roots are simple roots. (1.5 points)

Next, we define a structure that resembles a scalar product on the algebra. Let ¢; be a
basis of the algebra, then the double commutator with any two algebra elements will be a
linear combination in the algebra:

[, [y, 1)) = > Kt
J
The Killing form is then defined as K(z,y) := Tr(K).
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(e) Prove that the Killing form on the Cartan subalgebra is bilinear and symmetric. (It
is, however, in general not positive definite and thus not a scalar product.) Determine

K(h,h'), where h =3, ey, h' =3 Niej. (1.5 points)

The Killing form enables us to make a connection between the Cartan subalgebra h and
its dual h*: One can prove that if a € h*, there exists a unique element h, € b such that

a(h) = K(ha,h) Vhebh.

(f) Calculate KC(hq,, h) with the help of the above theorem and find h,, from comparison
with your result from (e). (1 point)

With the help of the h,, we are now able to define a scalar product on h*:

(@i, o) := K(ha,, ha;), where ay,a; € h*.

(g) Calculate the Cartan matrix, defined by

2<CYZ', Oéj>

A= )
Y <aia ai>

The information about the algebra that is encoded in the Cartan matrix is complete
in the sense that it is equivalent to knowing all structure constants. There is one more
equivalent way of depicting the algebra information in drawing a Dynkin diagram:
To every simple root «;, we associate a small circle and join the small circles ¢ and j

with A;;A;; (no summation, ¢ # j) lines. (1.5 points)
(h) Draw the Dynkin diagram for su(N). (0.5 points)
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