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Among many important applications, Lie algebras and Lie groups are used to describe
gauge interactions in particle physics models. This exercise sheet is devoted to study the
Lie algebra of a particular class of those, namely special unitary (SU(N)) groups. As you
already know, SU(2) plays an important role in the description of spin 1

2
particles as well

as the weak interactions, SU(3) is compulsory for quantum chromodynamics and SU(5) is
a very popular alternative for a grand unified theory (GUT), just to cite some examples.
In the first exercise we attempt to make contact with the intuitive picture and for that
we take the simplest example SU(2). The second exercise deals with the general case.
Selected references on group theory can be found at the end of the sheet.

1.1 The Lie algebra of SU(2) 9 points

Consider the group

SU(2) :=
{
U ∈ GL(2,C)

∣∣ U † = U−1 , detU = 1
}
.

(a) Show that SU(2) as a manifold is equivalent to a 3-sphere (SU(2) ∼= S3). (3 points)
Hint: Find an equation constraining the parameter space of U to S3 as a submanifold
in R4.

The previous exercise shows that SU(2) is an example of a Lie group, i.e. a group which
admits the structure of a differentiable manifold.

(b) Introduce spherical coordinates on S3 to infer

U(ω, θ, φ) = cos(ω) · 1 + i sin(ω) · (~ω0 · ~σ) (1)

where ~ω0 = (sin θ cosφ, sin θ sinφ, cos θ)T ∈ S2 and the σi are the Pauli matrices defined
by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(3 points)
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(c) Consider the three dimensional vector ~ω ≡ ω · ~ω0. What is its parameter space? What
can you say about its boundary? After the proper identification one can see that the
space defined by ~ω is topologically equivalent to S3. (1 point)

(d) Use eq. (1) to show that every U ∈ SU(2) obeys the differential equation

∂U

∂ω
= i(~ω0 · ~σ)U .

Integrate this to determine the solution

U(~ω) = exp{i~ω · ~σ} ,

compute the following quantities:

Ti =
∂U

∂ωi

∣∣∣∣
~ω=0

for i = 1, 2, 3

and finally show that they satisfy the commutation relation [Ti, Tj] = 2iεijkTk. (2 points)

Even though it was a very simple example, the previous exercise shows that by introducing
a set of coordinates and by using the differentiability of the manifold, we can parameterize
any element of SU(2) in terms of very local data (the tangent vectors Ti).
In general, given the coordinates xi for a Lie group G, we can define the basis

Ti :=
∂g

∂xi

∣∣∣∣
g=1

for the tangent space g := T1G at the identity element 1 ∈ G. The vectors Ti are called the
generators of the Lie algebra g. It is known that in a certain vicinity of the identity,
the elements of G can be written in the form eix

iT i
, as we can see in the case of SU(2).

In more formal terms, a Lie algebra is vector space with a binary operator [·, ·] : g×g→ g.
Given a, b, c ∈ g and λ ∈ R the operator must satisfy

• [λa, b] = λ[a, b] (linear),

• [a, b] = −[b, a] (skew-symmetric),

• [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (Jacobi identity).

Note that in the previous SU(2) example we have taken the bilinear [·, ·] to be the standard
commutator.

2.1 Roots, Cartan matrix and Dynkin diagram of su(N) 12 points

Consider the space of all N ×N matrices and regard it as a Lie algebra gl(N). We choose
as a basis the elements eab with components (eab)ij = δaiδbj.
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(a) Verify the multiplication rule and thus the commutator operation on the algebra
(1 point)

eabecd = eadδbc , [eab, ecd] = eadδbc − ecbδad.

(b) Let us now restrict to the case of SU(N). Take an arbitrary element U = eiM . Which
properties does M need to satisfy? Use this result to write a basis for the generators
of su(N). What is the dimension of the algebra? (2 points)
(Hint: det eM = etrM)

(c) The Cartan algebra h is defined as the maximal commuting subalgebra of the Lie
algebra. Its dimension is called the rank of the Lie algebra. Give a possible choice for
the Cartan subalgebra of su(N). What is the rank r of su(N)? (1 point)

(d) Now we want to diagonalize the Cartan algebra in the adjoint representation, which
acts by the commutator

adh(g) = [h, g]

Perform a (complex) basis change of su(N)/h to an eigenbasis of h. You should find,

[h, eab] = (λa − λb) eab , (2)

with h =
∑

i λieii. (1 point)

We can regard eq. (2) (for eab fixed) as a prescription for how to associate a number (λa−λb)
to each h ∈ h. We can write this prescription as

αeab
(h) = λa − λb.

We call αeab
a root. The roots live in the dual space of the Cartan subalgebra h. This

dual space is commonly denoted by h∗.
Let α1 . . . αr be a fixed basis of roots so every element of h∗ can be written as ρ =

∑
i ciαi.

We call ρ positive (ρ > 0) if the first non-zero coefficient ci is positive. Note, that the
basis roots αi are positive by definition. If the first non-zero coefficient ci is negative, we
call ρ negative. For ρ, σ ∈ h∗, we shall write ρ > σ if ρ − σ > 0. A simple root is a
positive root which can not be written as the sum of two positive roots.

(d) Now choose a basis αi for the root space of the form

αi(h) = λi − λi+1, i = 1, 2, . . . , N − 1 .

Verify that these roots are a basis and that they are positive with α1 > α2 > . . . > αN−1.
Show that these roots are simple roots. (1.5 points)

Next, we define a structure that resembles a scalar product on the algebra. Let ti be a
basis of the algebra, then the double commutator with any two algebra elements will be a
linear combination in the algebra:

[x, [y, ti]] =
∑
j

Kijtj .

The Killing form is then defined as K(x, y) := Tr(K).
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(e) Prove that the Killing form on the Cartan subalgebra is bilinear and symmetric. (It
is, however, in general not positive definite and thus not a scalar product.) Determine
K(h, h′), where h =

∑
i λieii, h

′ =
∑

j λ
′
jejj. (1.5 points)

The Killing form enables us to make a connection between the Cartan subalgebra h and
its dual h∗: One can prove that if α ∈ h∗, there exists a unique element hα ∈ h such that

α(h) = K(hα, h) ∀h ∈ h .

(f) Calculate K(hαi
, h) with the help of the above theorem and find hαi

from comparison
with your result from (e). (1 point)

With the help of the hα, we are now able to define a scalar product on h∗:

〈αi, αj〉 := K(hαi
, hαj

), where αi, αj ∈ h∗.

(g) Calculate the Cartan matrix, defined by

Aij :=
2〈αi, αj〉
〈αi, αi〉

.

The information about the algebra that is encoded in the Cartan matrix is complete
in the sense that it is equivalent to knowing all structure constants. There is one more
equivalent way of depicting the algebra information in drawing a Dynkin diagram:
To every simple root αi, we associate a small circle and join the small circles i and j
with AijAji (no summation, i 6= j) lines. (1.5 points)

(h) Draw the Dynkin diagram for su(N). (0.5 points)
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