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2.1 The Hierarchy Problem 20 points

Consider the Yukawa sector in the Standard Model (SM) Lagrangian

LSM ⊃ −y
(e)
ij L

i
He

j
R − y

(d)
ij Q

i
Hd

j
R − y

(u)
ij Q

i
H̃u

j
R + h.c. (1)

We have used i, j as family indices and introduced the doublet H̃ = (iσ2)H∗ to construct
a gauge invariant Yukawa coupling for the up-type quarks.

(a) Show that H̃ and H transform identically under SU(2)L and carry opposite U(1)Y
charges. (1 point)

(b) Take the Higgs VEV to be of the form 〈H〉 = 1√
2
(0, v)T . This allows for the following

redefinition of the excitation modes in the Higgs field

H = exp

{

i

v
ξa(x)T a

}(

0
1√
2
(v + h(x))

)

,

in which ξa(x) and h(x) are real fields. Argue why this reparametrization is possible.
What is the role of the fields ξa(x) after spontaneous symmetry breaking (SSB)? From
your answer to the previous questions you can deduce that there is the possibility to
gauge away the contribution of the ξa’s by means of an SU(2)L transformation. Use
this so-called unitary gauge and eq. (1) to find the couplings of the fermions to the
Higgs boson h(x) as well as their corresponding mass terms. (1.5 points)

(c) The mass terms previously found are not in a diagonal form. In other words, flavor
eigenstates are not mass eigenstates. The mass matrices are brought to a diagonal
form at the cost of introducing the CKM matrix for the quark sector (and the PMNS
matrix for the neutrino sector). Why can we simultaneously diagonalize mass matrices
and Yukawa couplings (hf ifj)? This implies that the SM Higgs is not expected to
introduce any flavor changing neutral currents at tree level.
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(d) Use experimental values to show that the Yukawa coupling for the top quark is very
close to one. Compare it to those for the bottom quark and the electron. (1 point)

From the theoretical point of view this is a very puzzling result: The mass spectrum
of the standard model expands over six orders of magnitude! In the light of SSB, the
masses are all set by the electroweak (EW) scale (v = 246 GeV) and thus, the hierarchy
for the masses is blamed to the pattern of Yukawa couplings. This hierarchy can be
better understood by considering running of the coefficients. The renormalization group
equations serve to explain the hierarchy between the electron and bottom quark Yukawas:
If one assumes that these are of the same order of magnitude at a much higher energy scale,
the contributions from the QCD coupling g3 drive them to the observed values at the EW
scale. Unfortunately this argument does not apply for the top quark, since the high value
for its Yukawa (∼ 1) cancels against g3 making its running negligible. The top-Yukawa is
then an IR fixed point in the standard model, but why that is the case still remains as an
open question.
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Figure 1: Fermion loop correction to the Higgs propagator

(e) Next we want to investigate the loop corrections to the Higgs propagator. Inspired
by your result from (b), consider a generic Dirac fermion f with mass m and Yukawa
coupling yf . Show that the matrix element for the fermion loop depicted in fig. 1 is
given by (2 points)

iΠ(q) = −
y2f

2

∫

d4k

(2π)4
tr

[ 6k +m

(k2 −m2 + iǫ)

6k+ 6q +m

((k + q)2 −m2 + iǫ)

]

. (2)

(Hint: Some useful Feynman rules are given at the end of the sheet.)

(d) To simplify the computations take the zero momentum limit (q → 0). Recall that
k2 = (k0)2 − (ki)2. Therefore, the integral of eqn. (2) is over Minkowski space. It is
much more convenient to perform such integrals in 4-dim Euclidean space. To do so,
one has to perform a Wick rotation: (3 points)

(i) View k0 as a complex variable. Draw the complex k0-plane. The integration is
along the real axis. Mark the position of the poles of the integrand in eqn. (2).

(ii) Use Cauchy’s integral theorem to argue that the integral from −∞ to +∞ is
equal to the integral from −i∞ to +i∞.

(iii) Define new (Euclidean) coordinates: k0 = in0 and ki = ni and rewrite the integral
in terms of kµ. At the end, rename nµ to kµ.
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(iv) Now we can set ǫ → 0, because there is no divergence on the path of integration.

(v) Rewrite your integral in spherical coordinates by using d4k = 2π2|k|3d|k|. The
result should read:

iΠ(0) =
iy2f
4π2

+∞
∫

0

(|k|2 −m2)|k|3d|k|
(|k|2 +m2)2

, (3)

(e) Using the boundaries from 0 to +∞, we see that the integrand diverges. We regularize
the integral by an energy cutoff, i.e. we integrate from 0 to Λ. Show that the resulting
matrix element takes the form

Π(0) =
y2f

8π2

[

Λ2 − 6m2 log

(

Λ

m

)

+ · · ·
]

. (4)

where the dots denote finite terms. (2 points)

(f) Show that the first order correction to the Higgs propagator in the zero momentum
limit is given by

− i

m2
h

[

1 +
Π(0)

m2
h

]

.

Now calculate the correction to all orders (several one-loop diagrams one after another).
Use the geometric series

1

1− x
= 1 + x+ x2 + ...

to show that all fermion loops shift the Higgs mass by ∆m2
h = −Π(0). (1 point)

The previous result is the reason for the so called Hierarchy problem. On one hand,
the Higgs mass parameterizes the electroweak (EW) scale, but as we could observe, this
quantity receives huge quantum corrections from the particles which couple (directly or
indirectly) to the Higgs field. In particular, we saw that such corrections scale quadrat-
ically with the cutoff scale Λ, so that one expects the m2

h to be of the order of Λ2. On
the other hand, Λ is interpreted as the energy scale at which new physics kicks in. If we
take Λ to be the Planck scale, we see that the Higgs mass measured recently at the LHC
(mh = 126 GeV) is unnaturally small (17 orders of magnitude smaller than the expected
quantum corrections).

Among all particles of the standard model, the Higgs boson is the only field which expe-
riences this traumatic effect. All other particles receive corrections which are logarithmic
in the cutoff. However, the quarks, leptons and the W± and Z bosons obtain their masses
from 〈H〉 ∼ mh, so that the entire mass spectrum is directly or indirectly sensitive to the
unnatural cutoff effects.

(g) Many solutions have been proposed to stabilize the EW scale against radiative cor-
rections and here we illustrate the supersymmetric one. Consider a complex scalar S
with the following mass and interaction terms

L ⊃ m2
S|S|2 −

√
2y

(1)
S mSh|S|2 −

1

2
y
(2)
S h2|S|2
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Draw the loop contributions of S to the Higgs propagator and write down the corre-
sponding matrix elements (at zero momentum) (2.5 points)

iΠS(0) = iΠ
(1)
S (0) + iΠ

(2)
S (0) .

(h) Use the techniques developed in (d) to arrive at the following result (3.5 points)

ΠS(0) = − 1

16π2

[

y
(2)
S Λ2 −m2

S(2y
(2)
S + 4(y

(1)
S )2) log

(

Λ

mS

)

+ · · ·
]

. (5)

(i) Note the very similar structure of eqs. (4) and (5). From these it follows that a
certain systematic cancelation is possible, provided a certain relation between yf and

y
(2)
S . However, if this cancelation is left at the level of the parameters, one faces
the problem of fine tuning. A more convincing solution is to propose a symmetry
which protects this relation. The symmetry which suits for this purpose is known
as supersymmetry (SUSY), it postulates that for each Weyl fermion in the spectrum
there is a complex scalar which carries the same quantum numbers. Take two scalars
SL and SR to be the superpartners of the fermion f introduced in (e). Why does
one need two scalars? Assume that the scalars have the same masses and coupling
strengths. SUSY predicts the following relations

y
(2)
S = (yf)

2 = (y
(2)
S )2 , (6)

m2
S = m2 , (7)

use them to show that ∆m2
h now scales logarithmically with Λ. (1 point)

(j) At the energy scales probed by colliders no superpartners have been observed so far, this
means that if SUSY plays any role in nature it must be broken at a higher scale. When
SUSY is softly broken eq. (6) still holds, ensuring that the quadratic divergence is
avoided. Nevertheless, the masses of the scalar superpartners are expected to be larger
than those of the fermions: m2

S = m2 +∆m2
SUSY . Write down the radiative correction

to the Higgs mass in the soft SUSY breaking scenario. Can the SUSY breaking scale
∆m2

SUSY reintroduce the hierarchy problem? (1.5 points)

Feynman Propagator of Fermions with Momentum q i 6 q+m

q2−m2+iǫ

Feynman Propagator of Bosons with Momentum q i 1
q2−m2+iǫ

Loop momentum k
∫

d4k
(2π)4

Fermion loop ·(−1)
Boson loop ·(+1)

Table 1: Some Feynman rules relevant for this exercise
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