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4.1 Majorana Fermions 5 points

We write a four component Dirac spinor in the chiral representation as a composition of
two Weyl spinors

Ψ =

(
ψL

ψR

)

.

A Majorana spinor is a Dirac spinor Ψ with the following constraint

Ψc := CΨ
T
= Ψ , (1)

where C = iγ2γ0 is the charge conjugation operator.

(a) Show that (Ψc)c = Ψ. What does eq. (1) imply for ψL and ψR and what is the physical
meaning of this condition? (1.5 points)

(b) The Lagrangian LD for a Dirac spinor has the form

LD = Ψ(iγµ∂µ) Ψ−mΨΨ ,

where the second term is called the Dirac mass term. Rewrite LD in ψL and ψR.
(1 point)

(c) Using the result of (b) rewrite the action LM for a Majorana spinor in terms of ψL/R

LM = Ψ (iγµ∂µ) Ψ−
m

2
ΨΨ .

The second term is called the Majorana mass term. Why is the factor 1/2 included in
the mass term? (1 point)
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(d) Remember the projectors PL/R = 1/2(1∓ γ5). As you know PL/R project Ψ onto the
left/right handed part, respectively. We denote ΨL/R := PL/RΨ. Show that

(
ΨL/R

)c
= (Ψc)

R/L
(
ΨL/R

)c (
ΨR/L

)c
= ΨR/LΨL/R

(1.5 points)

4.2 SO(10) GUTs: U(1)B−L and the See-Saw Mechanism 15 points

Here we revise some of the most outstanding features of SO(10) grand unified theories.

α1 α2 α3

α4

α5

Figure 1: The Dynkin diagram of so(10).

(a) Use the Dynkin diagram of SO(10) to infer its corresponding Cartan matrix Aij .
The highest weight of the fundamental (10) and the spinor (16) representation are
(1, 0, 0, 0, 0) and (0, 0, 0, 0, 1). Apply the highest weight procedure to construct these
representations explicitly. Are they real? If not, give the highest weight of the complex
conjugate representation. (1,5 points)

To study the breakdown of SO(10), let us introduce the Dynkin symmetry breaking
procedure: To each simple root one assigns an integer number, called the Kač label ai.
They are given as the coefficients of the decompositions of the highest root in the basis of
simple roots. Deleting any node with Kač label ai = 1 from the Dynkin diagram gives a
maximal regular subalgebra times a U(1) factor.

(b) The Dynkin label for the highest root is (0, 1, 0, 0, 0). Write the highest root as a
combination of simple roots. Use this to give all possible alternatives for the Dynkin
symmetry breaking of SO(10). (1 point)

(c) We specialize to the breaking SO(10) → SU(5)×U(1)X , and hence we delete the node
α4 from the Dynkin diagram. The generator of U(1)X must anihilate all roots of su(5).
Show that

αx = 2α1 + 4α2 + 6α3 + 5α4 + 3α5 ,

fulfills these conditions. Note that αi i = 1, 2, 3, 5 together with αX form a Cartan
subalgebra for so(10), hence any weight M is an eigenvector of αX , and its eigenvalue
is the U(1)X charge. How does αX act on M? (2 points)
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(d) Both the 10 and the 16 are reducible representations of SU(5). To identify their
corresponding branching rules we can use the highest weight constructions obtained
in (a). Erase all arrows involving α4 and identify the disconnected pieces. To read out
the representation for each of the pieces, transform each Dynkin label m of so(10) into
an su(5) one by deleting the fourth entry

m = (m1, m2, m3, m4, m5) 7→ (m1, m2, m3, m5) .

Use your results from the previous exercise sheet, together with the generator αX to
arrive at the following branchings

10 = 52 ⊕ 5−2 ,

16 = 1−5 ⊕ 53 ⊕ 10−1 , (2)

where the subindices label the charges under U(1)X . (1.5 points)

As you already know, SU(5) unifies all gauge interactions into a single, semi-simple Lie
group. The irreducible representations 10 ⊕ 5 furnish a complete family as one can see
from the branchings

10 →

QL

︷ ︸︸ ︷

(3, 2)1/6 ⊕

uR

︷ ︸︸ ︷

(3, 1)
−2/3 ⊕

eR
︷ ︸︸ ︷

(1, 1)1 ,

5 → (3, 1)1/3
︸ ︷︷ ︸

dR

⊕ (1, 2)−1/2
︸ ︷︷ ︸

LL

, (3)

in which the hypercharges have been put as subindices. As you can see from eq. (2), we
can combine these representations, together with a right handed neutrino νR (1−5) to form
the 16-plet of SO(10).

(e) Use the branchings (2) and (3). Find U(1)B−L as a linear combination of U(1)X
and U(1)Y . (Hint: All quarks have B− L charge 1/3, whereas leptons have charge
−1.) (1.5 points)

(f) Physically speaking the breakdown of SO(10) proceeds similarly as the standard Higgs
mechanism. So we need a scalar field S to develop a VEV. We ensure that SU(5) ⊂
SO(10) remains intact by assigning the VEV to an SU(5) singlet of S. Note that the
16 contains a singlet of SU(5), the same happens for the 45 and 126

45 = 10 ⊕ 10−4 ⊕ 104 ⊕ 240 ,

126 = 1−10 ⊕ 5−2 ⊕ 10−6 ⊕ 156 ⊕ 452 ⊕ 50−2 . (4)

Under which of these representations can S transform so that its VEV does not break
U(1)B−L? (0.5 points)

(g) Show that by taking S to transform as the 126, U(1)B−L gets broken to a Z2 discrete
subgroup. (1.5 points)

3



Finally we consider this breaking scheme to study neutrino masses. We denote by s the
SU(5) singlet of the 126 and assume the standard model Higgs scalar to descend from the
10-plet of SO(10)

H = (1, 2)1/2 ⊂ 52 ⊂ 10 .

(h) What is the U(1)X charge for H? Verify that the couplings

LL H̃ νR ⊂ 16⊗ 10⊗ 16 and s∗(νR)c νR ⊂ 126⊗ 16⊗ 16

are gauge invariant (recall that H̃ = iσ2H∗). As these couplings are allowed in the
lagrangian, denote their coupling strengts by yν and ys, respectively. (0.5 points)

(i) Give the corresponding VEVs to H and s and show that the previous couplings lead
to the following Dirac-Majorana mass term for the neutrinos

LDM = −
1

2

[

mD(νL νR + νR νL) +mLνL (νL)
c +mR(νR)c νR

]

(5)

Write mL, mR andmD in terms of yν , ys, 〈s〉 and v (the Higgs VEV). Use these results
to explain why mL must be zero, mD is of the order of the electroweak symmetry
breaking scale MW ∼ 100GeV and mR ∼MGUT ∼ 1016GeV. (1.5 points)

(j) Show that eq. (5) can be written in matrix form as

LDM = −
1

2

(

νL (νR)c
)
M

(
(νL)

c

νR

)

with

M =

(
mL mD

mD mR

)

being the neutrino mass matrix. Hint: Use your results from exercise 4.1 (1 point)

(k) In this setup, diagonalize M using an orthogonal matrix A

ATMA = diag(m1, m2).

Show that to the first non-vanishing order in the (small) parameter ρ := mD/mR that
the eigenvalues are m1 = −m2

D
/mR and m2 = mR. Find the rotation matrix A to

the first order in ρ for the diagonalization. What does ρ ≪ 1 imply for the mass
eigenstates? Insert the estimations done in (i) and compare the mass of the light
neutrino to actual experimental bounds. (2.5 points)

We see that by making one mass heavy the other one becomes very light. For this reason
setups of this kind are generically referred to as See-Saw mechanism.
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