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9.1 Dark Matter in Galaxies 8 points
The observation of the galactic rotation curve1 1 yields a deficit of mass in the galaxy.
Under the assumption of spherical symmetry of a rotating galaxy one can calculate the
mass inside a sphere of a given radius from the circular velocity of the stars at its surface
and compare it to an estimation from the visible stars.

Figure 1: rotation curve of a galaxy

(a) Give a formula which expresses the circular velocity in terms of the enclosed mass and
the distance to the galactic center. Verify the virial theorem for gravitationally bound
systems < T >= − < V > /2. (2 points)

(b) Assume the simplest case of a constant mass density ρ0 inside a radius r0. How does
the rotation curve look like? (1 point)

1Image taken from http : //www.astronomy.ohio− state.edu/ thompson/162/Lecture40.html
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(c) A more realistic distribution is of the form

ρ(r) =
ρ0r

2
0

r2 (1 + r/r0)
α .

Derive the rotation curve v(r). Which value of α gives a flat rotation curve at r � r0
as shown in the measurements? (3 points)

(d) At r = 105 light years the measurement yields vcalc = 15km/s and vmeas = 225km/s.
Calculate the visible as well as the true galaxy mass. What is the percentage of dark
matter in the galaxy? How high is the average dark matter mass density?
Hint: G = 6.67× 10−11 m3 kg−1 s−2 (2 points)

9.2 The Boltzmann equation 12 points

Consider a stable particle ψ. In a comoving volume, we know that the number of ψ and ψ
changes only through annihilation and inverse annihilation processes (with χ we indicate
all the possible final states):

ψψ ↔ χχ .

Under certain simplifying assumptions, the Boltzmann equation that rules the evolution
of the number density for ψ and can be written as:

dnψ
dt

+ 3Hnψ = −〈σA|v|〉(n2
ψ − (nEQ

ψ )2) , (1)

where σA|v| is the total annihilation cross section, and nEQ
ψ is the particle number density

at thermal equilibrium. Let us take a system in which the assumptions that lead to the
previous formula are fulfilled, and consider the following questions:

(a) Take a particle ψ and use the following quantity

Y =
nψ
s
,

where s is the entropy density. Using the conservation of entropy per comoving volume
(sa3 = constant), show that (1 point)

ṅψ + 3Hnψ = sẎ . (2)

(b) Let m be the mass of the particle ψ. Now introduce the quantity

x ≡ m

T
. (3)

During the radiation dominated era, define also H(m) ' 1.67(g∗) 1
2m2/mPl, and

H(x) = H(m)x−2. Show that the Boltzmann equation becomes (4 points)

dY

dx
=
−x− 〈σA|v|〉s

H(m)
(Y 2 − Y 2

E ) . (4)
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(c) Write the expression for YEQ(x) (notice, as a function of x), in the case x� 3 (that is,
the non-relativistic limit), and in the case 3� x (the relativistic limit). Suppose that
the freezed out occurs at x ≡ xf while still in the relativistic case. What is the value
of YEQ(x) at xf ? (3 points)

(d) We have derived the x-dependent Boltzmann equation

dY

dx
=

λ

x2
(Y 2 − Y 2

E ) , (5)

where λ is parametrized by

λ =
m3〈σA|v|〉
H(m)

(6)

and can be considered as constant in this exercise. At late times, i.e. well after freeze-
out, Y will be much larger than YEQ and the relation

dY

dx
w
λY 2

x2
(x� 1) (7)

holds. Integrate equation (7) analytically in order to derive the approximation

Y∞ w
xf
λ
. (8)

Typically one can consider Yf being significantly larger than Y∞. (4 points)
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