Exercise 9 14th June 2013 SS 13

8 points

Exercises on Theoretical Particle Astrophysics

Prof. Dr. Hans Peter Nilles

http://www.th.physik.uni-bonn.de/nilles/

-Home Exercises-Due 21th June

9.1 Dark Matter in Galaxies

The observation of the galactic rotation curve¹ 1 yields a deficit of mass in the galaxy. Under the assumption of spherical symmetry of a rotating galaxy one can calculate the mass inside a sphere of a given radius from the circular velocity of the stars at its surface and compare it to an estimation from the visible stars.

Observed vs. Predicted Keplerian

Figure 1: rotation curve of a galaxy

- (a) Give a formula which expresses the circular velocity in terms of the enclosed mass and the distance to the galactic center. Verify the virial theorem for gravitationally bound systems $\langle T \rangle = -\langle V \rangle /2$. (2 points)
- (b) Assume the simplest case of a constant mass density ρ_0 inside a radius r_0 . How does the rotation curve look like? (1 point)

¹Image taken from *http*://www.astronomy.ohio-state.edu/thompson/162/Lecture40.html

(c) A more realistic distribution is of the form

$$\rho(r) = \frac{\rho_0 r_0^2}{r^2 \left(1 + r/r_0\right)^{\alpha}}$$

Derive the rotation curve v(r). Which value of α gives a flat rotation curve at $r \gg r_0$ as shown in the measurements? (3 points)

(d) At $r = 10^5$ light years the measurement yields $v_{calc} = 15$ km/s and $v_{meas} = 225$ km/s. Calculate the visible as well as the true galaxy mass. What is the percentage of dark matter in the galaxy? How high is the average dark matter mass density? Hint: $G = 6.67 \times 10^{-11} m^3 kg^{-1} s^{-2}$ (2 points)

9.2 The Boltzmann equation

Consider a stable particle ψ . In a comoving volume, we know that the number of ψ and $\overline{\psi}$ changes only through annihilation and inverse annihilation processes (with χ we indicate all the possible final states):

$$\psi \overline{\psi} \leftrightarrow \chi \overline{\chi}$$
.

Under certain simplifying assumptions, the Boltzmann equation that rules the evolution of the number density for ψ and can be written as:

$$\frac{dn_{\psi}}{dt} + 3Hn_{\psi} = -\langle \sigma_A | v | \rangle (n_{\psi}^2 - (n_{\psi}^{\mathrm{EQ}})^2) , \qquad (1)$$

where $\sigma_A|v|$ is the total annihilation cross section, and n_{ψ}^{EQ} is the particle number density at thermal equilibrium. Let us take a system in which the assumptions that lead to the previous formula are fulfilled, and consider the following questions:

(a) Take a particle ψ and use the following quantity

$$Y = \frac{n_{\psi}}{s}$$

where s is the entropy density. Using the conservation of entropy per comoving volume $(sa^3 = \text{constant})$, show that (1 point)

$$\dot{n}_{\psi} + 3Hn_{\psi} = s\dot{Y}.$$
(2)

(b) Let m be the mass of the particle ψ . Now introduce the quantity

$$x \equiv \frac{m}{T} \,. \tag{3}$$

During the radiation dominated era, define also $H(m) \simeq 1.67(g^*)^{\frac{1}{2}}m^2/m_{Pl}$, and $H(x) = H(m)x^{-2}$. Show that the Boltzmann equation becomes (4 points)

$$\frac{dY}{dx} = \frac{-x - \langle \sigma_A | v | \rangle s}{H(m)} (Y^2 - Y_{\rm E}^2) \,. \tag{4}$$

12 points

- (c) Write the expression for $Y_{EQ}(x)$ (notice, as a function of x), in the case $x \gg 3$ (that is, the non-relativistic limit), and in the case $3 \gg x$ (the relativistic limit). Suppose that the freezed out occurs at $x \equiv x_f$ while still in the relativistic case. What is the value of $Y_{EQ}(x)$ at x_f ? (3 points)
- (d) We have derived the x-dependent Boltzmann equation

$$\frac{dY}{dx} = \frac{\lambda}{x^2} (Y^2 - Y_{\rm E}^2), \qquad (5)$$

where λ is parametrized by

$$\lambda = \frac{m^3 \langle \sigma_A | v | \rangle}{H(m)} \tag{6}$$

and can be considered as constant in this exercise. At late times, i.e. well after freezeout, Y will be much larger than $Y_{\rm EQ}$ and the relation

$$\frac{dY}{dx} \simeq \frac{\lambda Y^2}{x^2} (x \ll 1) \tag{7}$$

holds. Integrate equation (7) analytically in order to derive the approximation

$$Y_{\infty} \simeq \frac{x_f}{\lambda}$$
 (8)

Typically one can consider Y_f being significantly larger than Y_{∞} . (4 points)