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9.1 Dark Matter in Galaxies 8 points
The observation of the galactic rotation curve! 1 yields a deficit of mass in the galaxy.
Under the assumption of spherical symmetry of a rotating galaxy one can calculate the
mass inside a sphere of a given radius from the circular velocity of the stars at its surface
and compare it to an estimation from the visible stars.
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Figure 1: rotation curve of a galaxy

(a) Give a formula which expresses the circular velocity in terms of the enclosed mass and
the distance to the galactic center. Verify the virial theorem for gravitationally bound
systems < T >=— <V > /2. (2 points)

(b) Assume the simplest case of a constant mass density po inside a radius ro. How does
the rotation curve look like? (1 point)

Tmage taken from http : //www.astronomy.ohio — state.edu/ thompson/162/Lecture40.html



(¢) A more realistic distribution is of the form
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Derive the rotation curve v(r). Which value of « gives a flat rotation curve at r > rg
as shown in the measurements? (3 points)

(d) At r = 10° light years the measurement yields vy, = 15km/s and vpeqs = 225km/s.
Calculate the visible as well as the true galaxy mass. What is the percentage of dark
matter in the galaxy? How high is the average dark matter mass density?

Hint: G =6.67 x 107 m? kg1 s72 (2 points)

9.2 The Boltzmann equation 12 points

Consider a stable particle 1. In a comoving volume, we know that the number of ¢ and
changes only through annihilation and inverse annihilation processes (with y we indicate
all the possible final states):

Y XX .

Under certain simplifying assumptions, the Boltzmann equation that rules the evolution
of the number density for ¢ and can be written as:
Moy 8Hny = ~(oalo (0 — (5?) (1)
dt v T ATARIAR AR
where o 4|v| is the total annihilation cross section, and ngQ is the particle number density
at thermal equilibrium. Let us take a system in which the assumptions that lead to the
previous formula are fulfilled, and consider the following questions:

(a) Take a particle ¢ and use the following quantity
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where s is the entropy density. Using the conservation of entropy per comoving volume
(sa® = constant), show that (1 point)

iy + 3Hny, = sY . (2)

(b) Let m be the mass of the particle 1. Now introduce the quantity

m

= (3)
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During the radiation dominated era, define also H(m) ~ 1.67(g%)2m?/mp;, and
H(x) = H(m)z~2. Show that the Boltzmann equation becomes (4 points)

dY — —z —{oalv|)s



(c) Write the expression for Ygq(z) (notice, as a function of x), in the case z > 3 (that is,
the non-relativistic limit), and in the case 3 > x (the relativistic limit). Suppose that
the freezed out occurs at ¥ = xy while still in the relativistic case. What is the value
of Ypq(z) at zy ? (3 points)

(d) We have derived the z-dependent Boltzmann equation

ay A
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where A is parametrized by
m*(oalv])
= oAl
H(m) (6)

and can be considered as constant in this exercise. At late times, i.e. well after freeze-
out, Y will be much larger than Ygq and the relation
ay  \Y?
= <) 9

holds. Integrate equation (7) analytically in order to derive the approximation
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Typically one can consider Y; being significantly larger than Y. (4 points)



