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1. The Dirac Equation

If we use the correspondence

~p→ −i∇, E → i∂t,

the relativistic energy-momentum relation

E2 = ~p 2 +m2

gives the Klein-Gordon equation:

(2 +m2)ψ = 0.

Dirac’s basic idea was to “factorize” the above relation to obtain an equation which
is first-order in the derivatives.

(a) Make the ansatz
Hψ = (αipi + βm)ψ. (1)

Squaring eq. (1) should give the Klein-Gordon equation. Show that from this
requirement, it follows:

β2 = α2
i = 1, {β, αi} = {αi, αj} = 0, i 6= j

(b) Define the Dirac matrices γµ, µ = 0, . . . , 3 by

γ0 = β, γi = βαi, i = 1, 2, 3.

Show that the Dirac equation can be written in the covariant form

(iγµ∂µ −m)ψ = 0.

(c) Show that the gamma matrices fulfill the Clifford algebra

{γµ, γν} = 2ηµν1l4, (2)

where ηµν = diag(1,-1,-1,-1) .
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(d) The lowest dimensional matrices satisfying the Clifford algebra eq. (2) are 4× 4
matrices. The choice of the matrices is not unique. One convenient choice is the
Weyl or chiral representation:

γ0 =

(

0 1l2
1l2 0

)

, γi =

(

0 σi

−σi 0

)

Verify that this set of matrices fulfills the Clifford algebra eq. (2).

(e) One can prove that the matrices αi, β must have a minimum of 4 dimensions.
The proof has 4 steps:

i. Show that the matrices αi, β are traceless. Hint: Calculate βαiβ and take
the trace.

ii. Show that the eigenvalues of αi, β are ±1.

iii. Show that the dimension of the matrices must be even. Hint: Combine the
results of (i) and (ii).

iv. Show that the dimension must be greater than 2. Hint: How many traceless
Hermitean matrices are there in n dimensions?

2. Representations of su(2)

A Lie algebra g is a vector space together with a skew-symmetric bilinear map

[·, ·] : g × g → g

satisfying the Jacoby identity.

A representation of a Lie algebra g on a vector space V is a linear map

ρ : g → End(V )

which is an algebra homomorphism. The dimension of V is called the dimension of
the representation.

If there is a vector space W ⊂ V so that ρ(g)W ⊂ W (invariant subspace), then the
representation is called reducible, otherwise irreducible.

(a) The group SU(2) is the set of all 2-dimensional unitary matrices with determi-
nant 1. Show that the corresponding Lie algebra su(2) is the set of traceless
Hermitean matrices. Hint: detA = exp Tr logA.

(b) Choose the basis

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)
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for the traceless Hermitean matrices. Define

J3 =
1

2
σ3, J+ =

1

2
(σ1 + iσ2) , J− =

1

2
(σ1 − iσ2) ,

and verify the commutation relations

[J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = 2J3.

(c) J3 is diagonalizable, so the matrix ρ(J3) on V is diagonalizable (preservation of
Jordan decomposition). Therefore V can be decomposed into eigenspaces:

V =
⊕

Vα

For v ∈ Vα, the “action of J3” yields a scalar multiple of v:

J3(v) := ρ(J3) v = αv, α ∈ C

Show that J+(v) ∈ Vα+1 and J−(v) ∈ Vα−1.

(d) From now on we assume the representation to be irreducible. Prove
that all complex numbers α which appear in the above decomposition differ from
one another by 1. Hint: Choose an arbitrary α0 ∈ C from the decomposition
and prove that

⊕

k∈Z

Vα0+k ⊂ V

is indeed equal to V using the irreducibility of the representation.

(e) Argue that there is k ∈ N for which Vα0+k 6= 0 and Vα0+k+1 = 0. Define n :=
α0 + k. Note that up to now, we only know that n ∈ C.

Draw a diagram. Write the vector spaces Vn−2, Vn−1, Vn in a row and indicate
the action of J3, J+, J− on these vector spaces by arrows.

The eigenvalue n is called highest weight and a vector v ∈ Vn is called highest
weight vector. Is it clear why?

(f) Choose an arbitrary vector v ∈ Vn (highest weight vector). Prove that the
vectors

{

v, J−v, J
2
−
v, . . .

}

span V . Hint: Show that the vector space spanned by
these vectors is invariant under the action of J3, J+, J− and use the irreducibility
of the representation.

(g) Argue that all the eigenspaces Vα are 1-dimensional.

(h) Prove that n is a non-negative integer or half-integer and that V = V−n⊕. . .⊕Vn.
Complement your diagram drawn in part (e). Hint: The representation is finite
dimensional, so there exists m ∈ Z (!) for which Jm−1

−
v 6= 0 and Jm

−
v = 0.

Evaluate the product J+J
m
−
v.
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We have learned so far:

• Every irreducible representation is characterized by a non-negative integer
or half-integer n which is called the highest weight.

• The eigenvalues range from −n to n and differ by integers. The dimension
of the representation is 2n+ 1.

• The eigenspaces are 1-dimensional.

• Given any non-negative integer or half-integer, there is a corresponding
irreducible representation. (This can be proven, we have not shown it in the
exercises.)

(i) Tensor Products of irreps

Consider the tensor product of a 2-dimensional and a 3-dimensional irreducible
representation of su(2):

V = V (2) ⊗ V (3)

Is the resulting representation V irreducible? If not, decompose V into its ir-
reducible representations. Hint: The first thing to note is that the action of a
Lie algebra on the tensor product of 2 representations is given by X(v ⊗ w) =
Xv ⊗w + v ⊗Xw, i.e. the eigenvalues of J3 on V is the sum of the eigenvalues
of J3 on V (2) and V (3). Draw the x-axis and mark the eigenvalues (with multi-
plicities) by circles. Then use the fact that the irreducible representations are
1-dimensional.

Web page for exercises and other information
http://www.th.physik.uni-bonn.de/nilles/exercises.html
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