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1. Weyl spinors - part II

(a) We want to rewrite the transformation laws for Weyl spinors under Lorentz
transformations in the standard notation:

D(Λ) = exp

(

−
i

2
ωµνM

µν

)

.

Therefore, we define the generalized Pauli matrices

σµ := (11, σi), σ̄µ := (11,−σi).

Then, we can define the following quantities:

σµν :=
i

4
(σµσ̄ν − σνσ̄µ), σ̄µν :=

i

4
(σ̄µσν − σ̄νσµ).

We denote the left-chiral Weyl spinor (1/2, 0) by ΨL and the right-chiral Weyl
spinor (0, 1/2) by ΨR. Show that the Weyl spinors transform as

ψL 7→ DLψL = exp

(

−
i

2
ωµνσ

µν

)

ψL,

ψR 7→ DRψR = exp

(

−
i

2
ωµνσ̄

µν

)

ψR.

Hint: You know TL and TR explicitly. Using the definitions, express first the K’s
and J ’s in terms of TL and TR. Second, express the Mµν ’s in terms of K’s and
J ’s. Now identify the components of σµν and σ̄µν with the components of Mµν .
You will see that they are equal.

(b) Prove the following equations:

D−1

L = D†
R

σ2DLσ2 = D∗
R

σ2 = (DL)Tσ2DL

Comparing the last equation to η = ΛTηΛ, we find that σ2 acts as a metric on
the space of the spinor components. We will learn more about it later...
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(c) Show that σ2Ψ
∗
L transforms in the (0, 1/2) representation and σ2Ψ

∗
R transforms

in the (1/2, 0) representation.

(d) Let ΦL, ΦR, ΨL and ΨR be Weyl spinors. Show that the following expressions
are invariant under Lorentz transformations:

i(ΦL)Tσ2ΨL Φ†
RΨL

i(ΦR)Tσ2ΨR Φ†
LΨR

(e) Choose ΦL = ΨL and compute i(ΨL)Tσ2ΨL. What can you say about spinor
components?

(f) Show that the parity operator acts as follows on the generators of the Lorentz
algebra:

J i 7→ J i, Ki 7→ −Ki

Hint: Use Mµν 7→ Λµ
ρΛ

ν
σM

ρσ, where Λµ
ν is now the parity operator.

(g) Show that under parity transformation a representation (m,n) of the Lorentz
algebra goes to (n,m), e.g. parity maps (1/2, 0) to (0, 1/2).

Therefore, if m 6= n, the parity transformation maps an element of the vector
space of the representation to an element that is not part of the vector space.

(Since parity maps left to right in the usual sense and the parity operator maps
left-chiral Weyl spinors to right-chiral and vice versa, these names for Weyl
spinors make sense.)

(h) Show that the dimension of the representation (m,n) is (2m+ 1)(2n+ 1).

(i) Show that the (4 dim.) Minkowski space is the vector space of the (1/2, 1/2)
representation.

Hint: Use the fact that parity maps a four-vector to a four-vector, i.e. you do
not leave the Minkowski space if you act with parity on a four-vector.

(j) Use your knowledge about representations of su(2) to show that:

(1/2, 0) ⊗ (0, 1/2) = (1/2, 1/2)

(1/2, 0) ⊗ (1/2, 0) = (1, 0) ⊕ (0, 0)

Interpret the result.

Hint: In the language of Exercise 3.1(i) check that: 2⊗1 = 2 and 2⊗2 = 3⊕1.

2



2. Dirac spinor - part I

Since the vector spaces of the left- and the right-chiral Weyl spinors are not mapped
to themselves under parity, we consider the following (reducible) representation of
the Lorentz algebra:

(1/2, 0) ⊕ (0, 1/2)

In words: you take a left-chiral Weyl spinor ΨL and a right-chiral Weyl spinor ΦR

and take them as the components of a new four-component spinor, called the Dirac
spinor:

Ψ =

(

ΨL

ΦR

)

Remark: Only when we use the chiral representation of the Clifford algebra, we can
write the Dirac spinor as two Weyl spinors in this easy way!

(a) Show that a Dirac spinor transforms under a Lorentz transformation as

Ψ 7→ DΨ = exp

(

−
i

2
ωµνγ

µν

)

Ψ

with γµν := i
4
[γµ, γν].

Hint: Use the results of 1(a) and use the chiral representation of the γ-matrices.

(b) Show that in the chiral representation the chirality operator γ5 := iγ0γ1γ2γ3

can be written as:

γ5 =

(

−11 0
0 11

)

(c) Prove the following relations without using any specific representation:

γ5† = γ5 and
(

γ5
)2

= 11

(d) Show that the following operators are projection operators (i.e. P 2 = P )

PL =
1

2
(11 − γ5) and PR =

1

2
(11 + γ5)

What is their action on a Dirac spinor (in the chiral representation)?
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3. Non-Abelian Gauge Symmetry

(a) A Lie algebra is defined via the commutation relations of the algebra elements

[T i, T j] = if ijkT k

The f ijk are called structure constants. Show that the structure constants, view-
ed as matrices (T i)kj := if ijk, furnish a representation of the algebra. This re-
presentation is called the adjoint representation. Hint: Use the Jacobi identity.

(b) Let us take a free Dirac field Lagrangian

L0 = Ψ̄(x) (iγµ∂µ) Ψ(x)

where the Dirac field transforms under (global) SU(N) transformations as

Ψ 7→ Ψ′ = UΨ, U = exp(iαaT a), U †U = 11.

Show that L0 is invariant under the transformation.

(c) Next, we have a look at local SU(N) transformations

Ψ 7→ Ψ′ = U(x)Ψ, U(x) = exp(iαa(x)T a), U †(x)U(x) = 11.

Show that the transformation of L0 now leads to an extra term

Ψ̄(x)U †iγµ (∂µU(x)) Ψ(x)

Thus, L0 is not invariant under local SU(N) transformations.

(d) Therefore, we want to gauge the symmetry: We introduce a (gauge) covariant
derivative by minimal coupling to a gauge field and identify the gauge field’s
transformation properties. The covariant derivative is defined via the require-
ment that DµΨ transforms in the same way as Ψ itself:

DµΨ :=
(

∂µ + igAa
µT

a
)

Ψ

and demand
(DµΨ) 7→ (DµΨ)′ = U(x)(DµΨ)

Show that this is equivalent to demanding that the gauge boson transforms as

Aa
µ 7→ Aa

µ
′ = Aa

µ − f abcαbAc
µ −

1

g
∂µα

a.

Hint: Expand the exponential at the appropriate place in the calculation.

(e) Show that
L = Ψ̄(x) (iγµDµ) Ψ(x)

is now gauge invariant.
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