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1. The Standard Model Higgs Effect - part II

After the vev of the neutral Higgs component has broken the SU(2)L ×U(1)Y gauge
symmetry to U(1)Q the covariant derivative, using the mass- and charge-eigenstates
Aµ, W±

µ and Zµ, has the form:

Dµ = ∂µ + ieQAµ + iZµ
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Together with the definitions:
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g′g

√

g′2 + g2
and Q := T3 +

Y

2

(a) Consider the following terms of the Lagrangian:

L ⊃ R̄iγµDµR + L̄iγµDµL

Find the interaction terms of the fermions with the gauge bosons. For the weak
interaction, analyse its V-A structure 1

2
(cV + cAγ5). Draw the corresponding

Feynman diagrams (Note: use iL, drop all fields and you get the vertex factor).

(b) Show that the mass of the electron is me = Gev√
2
.

Hint: Using the unitary gauge, insert the shifted Higgs field

φ(x) =

(

0
1√
2
(v + η(x))

)

into the so called Yukawa couplings of the Lagrangian:

L ⊃ −Ge

(

L̄φR + R̄φ†L
)
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2. Dynkin Diagram of SU(n) - part I

Consider the space of all n × n matrices and regard it as a Lie algebra (of GL(n)).
We choose as a basis the elements eab with components

(eab)ij = δai δbj.

(a) Verify the multiplication rule and thus the commutator operation on the algebra

eab ecd = ead δbc , [eab, ecd] = ead δbc − ecb δad.

In order to deal with the Lie algebra of SU(n), we restrict ourselves to traceless n×n

matrices (eab are the step operators, see part (i) for an example).

Therefore, the algebra consists of linear combinations of eab for a 6= b (in order to be
traceless) and of elements h =

∑

i λieii where
∑

i λi = 0.

(b) Show that H forms a subalgebra, i.e. show that

[h, g] = 0 for h, g ∈ H

The dimension of the Cartan subalgebra is called the rank of the algebra. We notice
that the rank of the SU(n) algebra is n− 1 and therefore also call the algebra An−1.

(c) Calculate the commutation relation of the elements of the Cartan subalgebra
with the other elements

[h, eab] = (λa − λb) eab. (1)

We can regard this equation as an eigenvalue equation where the operation [h, . ] acts
on the eigenvector eab to reproduce eab with the eigenvalue (λa − λb). This operator
is called the adjoint of h:

adh(eab) := [h, eab]

adh(eab) = (λa − λb) eab

Or we can regard the equation 1 (for eab fixed) as a prescription for how to associate
to each h ∈ H a number (λa − λb). We can write this prescription as

αeab
(h) = λa − λb.

We call αeab
a root. The roots live in the dual space of the Cartan subalgebra H.

This dual space is denoted by H∗.

Let α1, α2 . . . αn−1 be a fixed basis of roots so every element of H∗ can be written as
ρ =

∑

i ciαi.

We call ρ positive (ρ > 0) if the first non-zero coefficient ci is positive. Note, that the
basis roots αi are positive by definition. If the first non-zero coefficient ci is negative,
we call ρ negative. For ρ, σ ∈ H∗, we shall write ρ > σ if ρ − σ > 0.

A simple root is a positive root which cannot be written as the sum of two positive
roots.
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(d) We choose a basis αi for the root space:

αi(h) = λi − λi+1 i = 1, 2, ..., n − 1.

Verify that these roots are a basis and that they are positive with α1 > α2 · · · >

αn−1. Show that these roots are simple roots.

Next, we define a structure that resembles a scalar product on the algebra. Let ti be
a basis of the algebra, then the double commutator with any two algebra elements
will be a linear combination in the algebra.

[x, [y, ti]] =
∑

j

Kijtj.

The Killing form is then defined as K(x, y) := Tr(K).

(e) Prove that the Killing form on the Cartan subalgebra is bilinear and symmetric.
(It is, however, in general not positive definite and thus not a scalar product.)
Determine K(h, h′), where h =

∑

i λi eii, h′ =
∑

j λ′
j ejj.

The Killing form enables us to make a connection between the Cartan subalgebra,
H, and its dual H∗: One can prove that if α ∈ H∗, there exists a unique element
hα ∈ H such that

α(h) = K(hα, h) ∀ h ∈ H.

(f) Calculate K(hαi
, h) with the help of the above theorem and find hαi

from com-
parison with your result from (e).

With the help of the hα, we are now able to define a scalar product on H∗:

〈αi, αj〉 := K(hαi
, hαj

), where αi, αj ∈ H∗.

(g) Calculate the Cartan matrix, defined by

Aij :=
2 〈αi, αj〉
〈αj, αj〉

.

The information about the algebra that is encoded in the Cartan matrix is complete
in the sense that it is equivalent to knowing all structure constants. There is one more
equivalent way of depicting the algebra information in drawing a Dynkin diagram:
To every simple root αi, we associate a small circle and join the small circles i and j

with AijAij (no summation, i 6= j) lines.

(h) Draw the Dynkin diagram for An (i.e. SU(n + 1)).
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(i) As an example, consider the Lie algebra of SU(2)

(cf. exercise sheet 3.1).

The step operators are given by

J+ =
1

2
(σ1 + iσ2) , J− =

1

2
(σ1 − iσ2)

and the Cartan subalgebra consists of the single element

h = J3 =
1

2
σ3 .

• Confirm that

e12 = J+, e21 = J− and h =
1

2
e11 −

1

2
e22 .

• Calculate αJ±
(J3).

• Choose α1 = αJ+
as the basis root, which is positive and simple. For α1 ∈

H∗, find the unique element hα1
∈ H such that

α1(h) = K(hα1
, h) ∀ h ∈ H.

Solution: hα1
= 1

2
J3

• Calculate the Killing form K(hα1
, hα1

) and draw the Dykin diagram.
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