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1. Dynkin Diagram of SU(n) - part II

On the last exercise sheet, we discussed Dynkin diagrams of SU(n) Lie algebras in
general. Then we followed the steps at the easiest example SU(2). Now, we want to
consider a non-trivial example, i.e. SU(3).

The standard basis for the hermitian 3 × 3 matrices are the so called Gell-Mann
matrices:

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0





λ3 =





1 0 0
0 −1 0
0 0 0



 λ4 =





0 0 1
0 0 0
1 0 0





λ5 =





0 0 −i

0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i

0 i 0



 λ8 =
1√
3





1 0 0
0 1 0
0 0 −2





(a) Define the step operators

T± =
1

2
(λ1 ± iλ2) , V± =

1

2
(λ4 ± iλ5) , U± =

1

2
(λ6 ± iλ7) .

Write them in terms of the eab’s.

(b) Show that H1 = 1
2
λ3 and H2 = 1

2
λ8 are the generators of the Cartan subalgebra.

Write them in terms of the eab’s and determine the coefficients λi (not to be
confused with the Gell-Mann matrices).

(c) Determine the action of the roots αeab
on the elements of the Cartan subalgebra

H1 and H2 by using the results of Ex.8.2(c).

New: Draw the roots in a 2-dim. picture, where the x-axis corresponds to H1

and the y-axis to H2, respectively.
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(d) Define a basis of the Cartan subalgebra α1 := αe12
and α2 := αe23

. They are
simple by definition.

What are dual generators Hαi
∈ H of the roots αi ∈ H∗ (i = 1, 2) so that

αi(h) = K(Hαi
, h) ∀ h ∈ H?

(e) Calculate the Cartan matrix and draw the Dynkin diagram of SU(3) by using
the Killing form and the results of part (d).

New: In the case that the generators are normalized properly, you can also see
〈αi, αj〉 as a normal scalar product of the roots you have drawn in part (c).

2. Representations of SU(n) - part I

(a) Remember the definition of the adjoint ad a(b) = [a, b]. Show that the adjoint
is a representation of the Lie algebra:

ad([a, b]) = [ad a, ad b] for a, b ∈ g

Note 1: The bracket [., .] denotes on the left hand side the abstract Lie bracket, but
on the right hand side the commutator.
Note 2: The adjoint representation ad of a Lie algebra g on a vector space V is a
linear mapping

ad : g → End(V ) ,

where V is equal to the Lie algebra itself, i.e. V = g. Compare to Ex.3.1.

So, when we computed the Dynkin diagram of SU(n), we implicitly used the adjoint
representation of SU(n):

ad h(eab) = [h, eab] (1)

Furthermore, we had the eigenvalue equation

ad h(eab) = αeab
(h)eab (2)

which defined the roots αeab
.

This eigenvalue equation can now be generalized to non-adjoint representations ρ on
some vector space V . Let φi be a basis of V . We denote the representations of the
elements of the Cartan subalgebra h ∈ H by ρ(h) and the representations of the step
operators eα by ρ(eα). Then the eigenvalue equation (2) reads:

ρ(h)φi = M i(h)φi

Since the linear functions M i act on elements h ∈ H and give (real) numbers, they are
elements of the dual space H∗. They are called weights. The corresponding vectors
φi are called weight vectors.

Note that roots are the weights of the adjoint representation!
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We know that the simple roots αj span H∗, so it is possible to express the weights
by simple roots

M i =
∑

cijαj ,

where the coefficients cij are in general non-integers.

A weight M i is called positive (M i > 0), if the first non-zero coefficient is positive.
We write M i > M j , if M i − M j > 0.

A weight is called the highest weight, denoted by Λ, if Λ > M i for all M i 6= Λ.

(b) Suppose that φi is a weight vector with weight M i. Show that ρ(eα)φi is a weight
vector with weight M i + α unless ρ(eα)φi = 0.

Hint: Use the equations (1) and (2) and the fact that ρ is a representation.

Thus it makes sense to think of the ρ(eα) as raising operators and the ρ(e−α) as
lowering operators.

SU(3) example

We want to get used to the new ideas by considering the three dimensional represen-
tation of SU(3), denoted by 3. For this representation, we know the explicit form of
the SU(3) generators as 3 × 3 matrices. They are listed in Ex.9.1. The Cartan sub-
algebra H is spanned by the elements H1 and H2. A basis of the three dimensional
vector space is given by the weight vectors

φ1 =





1
0
0



 , φ2 =





0
1
0



 and φ3 =





0
0
1



 .

(c) Consider the action of H = aH1 + bH2 on the weight vectors φi to find the
weights M i. Express the weights M i in terms of the simple roots α1 and α2 and
find the highest weight Λ. Hint: Use the results of Ex. 9.1(c).

(d) Along the lines of Ex.9.1(c), draw the weights in a 2-dim. picture. Note that the
difference of two weights is a root!

(e) Consider the action of T±, V± and U± on the weight vectors φi and compare
your results to part (b).

Indicate the action of these operators on the weights M i by arrows in the picture
of part (d).

Without any prove: A highest weight Λ can be specified by a set of non-negative
integers, called the Dynkin coefficients:

Λi = 2
〈Λ, αi〉
〈αi, αi〉

If one only has the Dynkin coefficients of the highest weight of some algebra, it is
possible to determine the corresponding highest weight and, furthermore, one can
even reconstruct all weights by the following recipe:

3



• To start, we need the Dynkin coefficients and the Cartan matrix.

• For each non-negative Dynkin coefficient Λi of a weight substract the i-th row of
the Cartan matrix. You will get the Dynkin coefficients of another weight. You
repeat substracting the i-th row of the Cartan matrix from the original weight
in total Λi-times.

• Repeat the last step for all weights, until all Dynkin coefficients are non-positive.

The number of Dynkin coefficients gives the number of different weights and therefore
the number of linear independent weight vectors. So this gives the dimension of the
representation. (This is not always true. In the case of the adjoint representation the
Dynkin coefficient (0...0) corresponds to the Cartan subalgebra, which can contain
more than one linear independent weight (root) vector).

SU(3) example

(e) Compute the Dynkin coefficients of the three weights and check that the highest
weight construction is correct.

(f) Perform the highest weight construction for the Dynkin coefficients (1, 1) of
SU(3).

More group theory in the book of Cahn: http://www-physics.lbl.gov/˜rncahn/book.html

3. The CKM Matrix

Consider the Yukawa couplings of N generations of quarks after spontaneous symme-
try breaking (and denote generation indices by i and j, sum over repeated indices).

L ⊃ −G
(ij)
d d̄LidRj − G(ij)

u ūLiuRj + h.c.

(a) Why “+h.c.”?

The real matrices Gd and Gu do not need to be diagonal. So, the quarks d and u are
not mass eigenstates, but they are eigenstates of the weak interaction. Nevertheless,
only mass eigenstates are regarded as physical particles that can be detected in an
experiment. So we have to perform a basis transformation and diagonalize the mass
matrices.

(b) Use biunitary transformations SdGdT
†
d = G

diag
d and SuGuT

†
u = Gdiag

u to diagona-
lize the mass matrices (Sd/u and Td/u are unitary matrices).

(c) Next, we analyse how this change of basis affects the weak interaction. The
relevant term of the Lagrangian is (using Li = (uLi, dLi)

T ):

L ⊃ L̄iiγ
µDµLi

⊃ − g√
2

(

W+
µ ūLiγ

µdLi + W−
µ d̄Liγ

µuLi

)

Use the mass eigenstates of the quarks to investigate the weak interaction vertex.
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