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1. Lorentz transformations

Let us consider the Minkowski space R1,3, the R4 together with the metric −η =

diag(1,−1,−1,−1). Elements x of this space are called four-vectors and denoted

x =

(

x0

−→x

)

=

(

ct
−→x

)

≡ xµ .

Thus the distance squared of two four-vectors x, y is written

(x − y)2 ≡ −ηµν(x − y)µ(x − y)ν = (x0 − y0)2 − |−→x −−→y |2

and the infinitesimal distance squared, the length element,

ds2 = −ηµνdxµdxν .

(a) For a Lorentzian metric the four-vectors can be divided into three classes: space-

like, lightlike and timelight vectors. Explain these terms. What is the condition

for light beams?

(b) The principle of relativity states that physics laws must be the same in all

inertial systems. Therefore we now consider transformations Λ between inertial

systems. What is the most general form of such transformation?

(c) Show that the requirement that the speed of light is the same in all inertial

frames leads to a constraint equation for Λ

(x − y)2 = (Λ(x − y))2 .

(d) Write this constraint in components, as Λρ
µΛσ

νηρ σ = ηµν . Compare with the

condition for orthogonal matrices.

(e) Convince yourself that the set of transformations Λ forms a group, the Lorentz

group

L = O(3, 1) ≡
{

Λ ∈ Mat(4,R) |Λt η Λ = η
}

.
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(f) Deduce from the defining condition that |Λ0

0
| ≥ 1 and detΛ = ±1. Explain

how the Lorentz group is divided into four branches. Which branches constitute

the proper Lorentz group SO(3,1)?

(g) What form does Λ take for parity, time reversal and purely spatial rotations?

(h) Now we consider Lorentz transformations which connect space and time com-

ponents, the boosts. Consider a boost along the z-axis (i.e. the origin of the

x′µ-system moves along the z-axis with constant speed v). Use condition (d) to

derive Λ for this situation. Define β ≡ v
c

and γ ≡ (1 − β)−
1

2 .

(Hint: the only interesting components are Λ0
0, Λ0

3, Λ3
0 and Λ3

3.

Also, cosh x = 1√
1−tanh

2 x
, sinh x = tanh x√

1−tanh
2 x

and cosh2 x − sinh2 = 1)

(i) Multiply the matrices of two parallel boosts (with velocities v1, v2) along the

z-axis and calculate how the velocities have to be summed. Consider the limit

c ≫ vi (for i = 1, 2) and the case that one of the velocities is c.

(Use sinh(x±y) = sinh x cosh y±cosh x sinh x and cosh(x+y) = cosh x cosh y±
sinh x sinh y .)

2. Contra- and covariant vectors and tensors

The xµ, which we used in 1., are called contravariant components of a four-vector x.

They are defined through their transformation behaviour under Lorentz transforma-

tions

x′µ = Λµ
νx

ν .

Now we use the metric η to define covariant components xµ of x by

xµ ≡ ηµν xν .

In general η is used to raise and lower indices.

(This means switching between the tangent and cotangent space of the manifold.)

(a) Show for the components of the inverse matrix of a Lorentz transformation

(Λ−1)µ
ν = Λ µ

ν . (Use (η−1)µν ≡ ηµν = ηµν .)

(b) How do the covariant components transform under Λ?

(c) Show that the derivative ∂µ ≡ ∂
∂xµ

transforms as a covariant and ∂µ ≡ ∂
∂xµ

as a

contravariant vector under Lorentz transformations.

(d) Why is the d’Alembert operator 1

c2
∂2

∂t2
−△ lorentzinvariant?
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(e) In analogy we can define tensors with more contra- and covariant indices. E.g.

define a tensor T µν with two contravariant indices through its transformation

property under Lorentz transformations

T µν 7→ Λµ
ρΛ

ν
σT

ρσ .

Deduce the transformation properties of tensors with two covariant and tensors

with one covariant and one contravariant index.

It should be clear that this can be repeated for tensors with arbitrary many in-

dices.

(f) How is the trace of a tensor defined? Calculate tr η.

(g) Why is εαβγδ pseudo-tensor?

(h) Explain the statement ’an equation is covariant’. Translate the principle of

relativity into our new language.

3. Electric current

The electrical charge and current densities of a collection of charged point particles

with positions ~xn(t) and charges en are

~J(~x, t) ≡
∑

n

en δ3(~x − ~xn(t))
d~xn(t)

dt
(1)

and

ε(~x, t) ≡
∑

n

en δ3(~x − ~xn(t)) . (2)

(a) Write Jα ≡ (
ε
~J ) as a single expression. Show that Jα transforms correctly as a

spacetime four-vector.

(b) Show that Jα is a conserved four-current:

∂αJα(x) = 0 , (3)

where ∂α ≡ ∂/∂xα ≡ (∂/∂t, ~∇).

(c) Verify that Q =
∫

d3xJ0(x) is time-independent.

4. Electromagnetism

Maxwell’s equations are

~∇ · ~E = ε , ~∇× ~B =
∂ ~E

∂t
+ ~J , ~∇ · ~B = 0 , ~∇× ~E = −∂ ~B

∂t
. (4)
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To make their properties under Lorentz transformations explicit, we can choose an

antisymmetric tensor F µν = −F νµ such that F 12 = B3 , F 23 = B1 , F 31 = B2 , and

F 01 = E1 , F 02 = E2 , F 03 = E3 .

(a) Show that

∂µF
µν = −Jν and ǫµνρσ∂νFρσ = 0 (5)

reproduce Maxwell’s equations. (ǫ0123 ≡ +1)

(b) Verify in the rest frame that

fµ ≡ dpµ

dτ
= eF µ

ν

dxν

dτ
(6)

is the correct equation for the electromagnetic four-force fµ acting on a charged

particle. (pµ = m dxµ/dτ)

5. Energy-momentum tensor

In analogy to the electrical charge and current densities in equations (1) and (2),

we can define a charge and current density for the four-momentum pµ, the energy-

momentum tensor

T µν(~x, t) ≡
∑

n

pµ
n(t)

dxν
n(t)

dt
δ3(~x − ~xn(t)) (7)

(a) Show that the energy-momentum tensor is only conserved up to a force density

Gµ which vanishes for free particles:

∂νT
µν = Gµ . (8)

(b) Check that for the electromagnetic forces given in (6), we get Gµ = F µ
ν Jν .

(c) To obtain a conserved energy-momentum tensor, we have forgotten to include

the contribution of the electromagnetic field itself:

T µν
em ≡ F µ

ρF
νρ − 1

4
ηµνFρσF ρσ . (9)

Write T 00

em and T i0
em in terms of ~E and ~B. Do you recognize the expressions?

(d) Show that ∂νT
µν
em cancels Gµ from (b) exactly.

(Use (5); the second equation is equivalent to ∂µF νρ + ∂νF
ρµ + ∂ρF

µν = 0.)

(e) Show that the total momentum pµ =
∫

d3xT µ0(~x, t) is a conserved quantity.

(This is completely analogous to 3.(c))
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