General Relativity and Cosmology

Winter term 2008/09

Dr. S. Förste Example sheet 1

Lorentz Transformations.

1. A Lorentz transformation is defined such that it leaves the "proper time"¹

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^{2} + d\bar{x}^{2} = -d\tau^{2}$$
⁽¹⁾

invariant. (Here $\eta_{\mu\nu} = diag(-1, 1, 1, 1)$ is the *Minkowski metric*). It transforms one system of spacetime coordinates x^{α} to another x'^{α} as

$$x^{\prime\alpha} = \Lambda^{\alpha}_{\ \beta} x^{\beta} + a^{\alpha} \tag{2}$$

or in matrix form

$$x' = \Lambda x + a$$

where a^{α} and $\Lambda^{\alpha}_{\ \beta}$ are constants.

- (a) How does the coordinate differential transform under a Lorentz transformation?
- (b) Requiring that (1) be invariant under a Lorentz transformation (2) implies a condition on $\Lambda^{\alpha}_{\ \beta}$. What is this condition? (Write it in matrix form as well).
- (c) Use this to show that the speed of light is the same in all inertial frames (write down also your definition of inertial frame).
- 2. The Lorentz group contains a familiar subgroup (specially for gymnasts, divers, skaters...) when restricted to spatial dimensions (spatial components of Λ only).
 - (a) Which group is this? (concentrate on the spatial components of Λ and use the condition you found in previous question to find the properties that the subgroup should obey. Thus identify it.)
 - (b) Compare this subgroup to the full Lorentz group. Using this information, what can you say about the Lorentz group? (which group is it?)
 - (c) Using your knowledge on the explicit form of the Lorentz transformations, write down Λ in matrix form for a boost along the *y* direction.
 - (d) Do Lorentz transformations commute?
 - (e) Can you find a different parametrisation of Λ such that its form resembles closely that of its subgroup discussed above? (Hint: define $v = \tanh \phi$)
- 3. Two important implications of the Lorentz transformations are the so called Lorentz contraction and time dilation. From the Lorentz transformations derive (explain your steps)
 - (a) The relation for the Lorentz contraction $L' = \gamma L$
 - (b) The relation for the time dilation $T = \gamma T'$

(here $\gamma = (1 - v^2)^{-1/2}$).

¹In units where c = 1. Units can always be recovered when needed by dimensional analysis.

- 4. A high speed train of length l moves along the x direction and goes through a tunnel of the same length at constant velocity v. In a spacetime diagram, show the world lines of the train and the tunnel from their respective reference frames. Show clearly
 - (a) the point at which the front of the train emerge form the tunnel
 - (b) the point at which the end of the train enters the tunnel
 - (c) the point where the end of the train is, when its front emerges from the tunnel, in the *train frame*
 - (d) the point where the front of the train is when its end enters the tunnel in the tunnel frame
 - (e) Does the train fit inside the tunnel from the tunnel frame? How about the train frame? Explain.

(Four)Vectors and Tensors.

5. Given the tensor $T^{\mu\nu}$ and the vector V^{μ} , with components

$$T^{\mu\nu} = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix}; \qquad V^{\mu} = (-1, 2, 0, -2)$$

Find the components of (write explicitly all the steps on how you calculate them)

- (a) $T^{\mu}_{\ \nu}$
- (b) $T_{\mu}^{\ \nu}$
- (c) T^{λ}_{λ}
- (d) $V^{\mu}V_{\mu}$
- (e) $V_{\mu}T^{\mu\nu}$