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1. Kruskal spacetime

Consider the Schwarzschild spacetime with metric given by

ds2 = −hdt2 + h−1dr2 + r2(dθ2 + sin2 θdφ2) (1)

where h = 1− 2m/r, and m = GM (c = 1).

(a) Show that (1) can be written as

ds2 = h(−dt2 + dr∗2) + r2(dθ2 + sin2 θdφ2) (2)

where r∗ is the Regge-Wheeler radial coordinate.

(b) Define further the ingoing Eddington-Finkelstein coordinates

v = t + r∗, −∞ < v <∞ (3)

Rewrite the metric (2) in these new coordinates.

(c) Repeat the steps above for the outgoing Eddington-Finkelstein coordinates

u = t− r∗, −∞ < u <∞ (4)

(d) Show that the Schwarzschild metric in the region r > 2m can be written in terms of the
ingoing and outgoing coordinates as

ds2 = −h dudv + r2(dθ2 + sin2 θdφ2) (5)

Introduce the Kruskal-Szekeres coordinates (U, V ) defined (for r > 2m) by

U = −e−u/4m , V = ev/4m (6)

and show that the metric becomes

ds2 = −32m3

r
er/2m dUdV + r2(dθ2 + sin2 θdφ2) (7)

Write down UV in terms of r∗ and r.

2. Physics in the vicinity of a massive object: Spectral shift

Consider the Schwarschild spacetime (1). In this problem, we study some of the physics in-
volved in the vicinity of such curved spacetime.



(a) Suppose that a signal is sent from an emitter at a fixed point (rE , θE , φE) and travels along
a null geodesic and is received by a receiver at a fixed point (rR, θR, φR). If tE is the coordi-
nate time of emission and tR the coordinate time of reception, then the signal passes from
the event with coordinates (tE , rE , θE , φE) to the event with coordinates (tR, rR, θR, φR).
Draw a spacetime diagram illustrating these events.

(b) Let u be an affine parameter along the null geodesic with u = uE at the event of emission
and u = uR at the event of reception. Show that

dt

du
=

[(
1− 2m

r

)−1

gij
dxi

du

dxj

du

]1/2

(8)

What does gijdxidxj corresponds to?

(c) On integrating the expression above we obtain

tR − tE =
∫ uR

uE

[(
1− 2m

r

)−1

gij
dxi

du

dxj

du

]1/2

du (9)

Argue that
∆tR = ∆tE (10)

where ∆t = t(2)− t(1) for two signals 1 and 2. That is, the coordinate time difference at the
point of emission equals the coordinate time difference at the point of reception.

(d) The clock of an observer situated at the point of emission records proper time and not
coordinate time. Find the relation between these two times and use it to show that

∆τE = (1− 2m/rE)1/2∆tE (11)

and similarly for ∆τR and thus

∆τR

∆τE
=

[
1− 2m/rR

1− 2m/rE

]1/2

(12)

(e) Suppose that the emitter is a pulsating atom, and that in the proper time interval ∆τE it
emits n pulses. An observer situated at the emitter will assign to the atom a frequency
of pulsation νE ≡ n/∆τE , and this is the proper frequency of the pulsating atom. An
observer situated at the receiver will see these n pulses in a proper time interval ∆τR and
thus assigna a frequency νR ≡ n/∆τR to the pulsating atom. Find the relation between
the two frequencies νR/νE .

(f) Expand the relation obtained above for rE � 2GM and rR � 2GM to show that the
fractional shift can be written as

∆ν

νE
≡ νR − νE

νE
' GM

(
1
rR
− 1

rE

)
(13)

Discuss this relation when the emitter (receiver) is nearer the massive object that the
receiver (emitter).


