General Relativity and Cosmology

Winter term 2008/09

Dr. S. Förste Example sheet 2

Electromagnetism

- 1. A typical example of a(n antisymmetric) tensor, is the *electromagnetic field strength* tensor $F_{\mu\nu}$.
 - (a) Show that $\partial_{\mu}F_{\lambda\nu} = 0$ is equivalent to (here [...] means antisymmetrisation, see handout 1)

$$\partial_{\mu}F_{\nu\lambda} + \partial_{\nu}F_{\lambda\mu} + \partial_{\lambda}F_{\mu\nu} = 0$$

- (b) Write the *contravariant* components of $F^{\mu\nu}$ identifying $F^{0i} \equiv E^i$, $F^{ij} \equiv \epsilon^{ijk}B_k$ (where ϵ^{ijk} is the antisymmetric Levi-Civita symbol in 3 dimensions).
- (c) Show that Maxwell's equations can be recovered from the *equations of motion* for $F^{\mu\nu}$, given by

$$\partial_{\mu}F^{\nu\mu} = J^{\nu}, \qquad \qquad \partial_{[\mu}F_{\lambda\nu]} = 0$$

Identify the components of the four current J^{μ} .

(d) The electric E and magnetic B vectors can be expressed in terms of a vector potential A and a scalar potential ϕ as

$$\mathbf{B} = \nabla \times \mathbf{A}, \qquad \mathbf{E} = \nabla \phi - \frac{\partial \mathbf{A}}{\partial \mathbf{t}}$$

How is $F_{\mu\nu}$ related to A and ϕ ? (write A and ϕ as a quadrivector A_{μ}).

(e) The potentials A and ϕ discussed above, are not unique. We can replace

$$\mathbf{A} \to \mathbf{A} + \nabla \psi$$
, $\phi \to \phi + \frac{\partial \psi}{\partial t}$

or equivalently, $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu}\psi$. This is called a *gauge transformation* Show that $F_{\mu\nu}$ is indeed invariant under this gauge transformation

- (f) From the tensor Lorentz transformation rules for a tensor $F_{\mu\nu}$, show how E and B transform under
 - i) a boost about the x axis.
 - ii) a rotation about the x axis (*)
- (g) With the fields E and B, we can form invariant quantities with respect to a transformation from one system of reference to another. These are

$$F_{\mu\nu}F^{\mu\nu}$$
, $F_{\mu\nu}F_{\lambda\beta}\epsilon^{\mu\nu\lambda\beta}$

Show that they are indeed invariant.

Write these two conditions above in terms of E and B and explain the physics involved.

(h) Verify that (*)

$$f^{\mu} \equiv \frac{dp^{\mu}}{d\tau} = e F^{\mu}_{\ \nu} \frac{d x_n^{\nu}(t)}{d \tau}$$
(1)

is the correct equation for the electromagnetic four-force f^{μ} acting on a charged particle $(p^{\mu} = m dx^{\mu}/d\tau)$ Taking the limit of small velocities, show that it does reproduces the Lorentz force.

Energy-momentum tensor (*)

2. It is possible to define a charge and current density for the four momentum p^{μ} , this is the *energy*-momentum tensor

$$T^{\mu\nu}(\mathbf{x}, t) = \sum_{n} p_n^{\mu}(t) \frac{d x_n^{\nu}(t)}{d t} \delta^3(\mathbf{x} - \mathbf{x}_n(t))$$

(a) Show that the energy-momentum tensor is only conserved up to a *force density* G^{μ} which vanishes for free particles

$$\partial_{\nu}T^{\mu\nu} = G^{\prime}$$

(b) Check that for electromagnetic forces given in (1)

$$G^{\mu} = F^{\mu}_{\nu}J^{\nu}$$

(c) To obtain a conserved energy-momentum tensor, we have to include the contribution of the electromagnetic field itself:

$$T_{em}^{\mu\nu} = F_{\rho}^{\mu} F^{\nu\rho} - \frac{1}{4} \eta^{\mu\nu} F_{\rho\sigma}^{\rho\sigma}$$

Write T_{em}^{00} and T_{em}^{i0} in terms of the electric and magnetic vectors E and B. Do you recognize the resulting expressions?

- (d) Show that $\partial_{\nu} T_{em}^{\mu n u}$ cancels G^{μ} introduced in point (a).
- (e) Show that the total momentum $p^{\mu} = \int d^3x T^{\mu 0}(\mathbf{x}, t)$ is a conserved quantity.

Angular momentum (*)

3. Consider another conserved quantity M given by

$$M^{\rho\mu\nu} = x^{\mu}T^{\nu\rho} - x^{\nu}T^{\mu\rho} \tag{2}$$

(a) Show that

$$J^{\mu\nu} = \int d^3x \, M^{0\mu\nu} \tag{3}$$

is antosymmetric and can be interpreted as the angular momentum of the system.

- (b) How does $J^{\mu\nu}$ transform under $x^{\mu} \rightarrow x^{\mu} + a^{\mu}$? What is the physical interpretation of the extra terms?
- (c) Show that the quantity $S_{\mu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} J^{\nu\rho} u^{\sigma}$ (where $u^{\sigma} = p^{\sigma}/\sqrt{-p \cdot p}$) is the system's four velocity) is invariant under the translation a^{μ} . What are the components of *S* in the center of mass frame of the system? What is the physical interpretation of *S*?