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1. Curvature

(a) The covariant derivative of a tensor in a certain direction measures how much the tensor
changes relative to what it would have been if it had been parallel transported, since the
covariant derivative of a tensor in a direction along which it is parallel transported is zero.
The commutator of two covariant derivatives, then, measures the difference between par-
allel transporting the tensor first on one way, and then on the other, versus the opposite
ordering. Consider a vector field V ρ, show that the commutator of two covariant derivatives
on this field is given by

[∇µ,∇ν ]V ρ = Rρ
σµνV

σ − T λ
µν∇λV

ρ (1)

where
Rρ

σµν = ∂µΓ̂ρ
νσ − ∂νΓ̂ρ

µσ + Γ̂ρ
µλΓ̂λ

νσ − Γ̂ρ
νλΓ̂λ

µσ (2)

is the curvature Riemann tensor and

T λ
µν = 2Γ̂λ

[µν] (3)

is the torsion tensor you have seen before. Notice from this derivation that the expression
(2) is constructed from nontensorial elements. However, you can check (homework) that
the transformation laws all work out to make this particular combination a legitimate tensor.
Notice also that the antisymmetry of Rρ

σµν in the last two indices is immediate from (2) and
its derivation. Finally, note that the curvature tensor above derived was constructed from
the connection (no mention of the metric was made). Thus this expression is true for any
connection, whether or not it is metric compatible or torsion free.

(b) Use locally inertial coordinates to deduce the symmetry properties of the curvature tensor.
This is most easily done using the Riemann tensor with all lower indices Rρσµν = gσλR

λ
σµν

(remember that tensorial equations are true in any coordinate system).

(c) Show that the sum of cyclic permutations of the last three indices of the curvature tensor
vanishes, that is

Rρσµν +Rρµνσ +Rρνσµ = 0 (4)

(d) Use the results in (b) to show that (4) is equivalent to the vanishing of the antisymmetric
part of the last three indices of the Riemann tensor, that is:

Rρ[σµν] = 0 (5)

(e) Given these relationships between the different components of the Riemann tensor, how
many independent quantities remain? Deduce the number of independent components of
the Riemann tensor in n dimensions.
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(f) Make use once more of locally inertial coordinates to prove Bianchi’s identity of the Rie-
mann tensor:

∇[λRρσ]µν = 0 (6)

(g) By contracting eq. (6) twice, show that

∇µRρµ =
1
2
∇ρR

Use this to prove that the Einstein tensor satisfies

∇µGµν = 0

(h) Show that any Killing vector ξµ satisfies

∇µ∇σξ
ρ = Rρ

σµνξ
ν

(i) (For the brave). The Weyl tensor in n dimensions is given by

Cρσµν = Rρσµν −
2

(n− 2)
(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2
(n− 1)(n− 2)

gρ[µgν]σR

One of the most important properties of this tensor is that it is invariant under conformal
transformations. This means that Cρ

σµν (note that the first index is upstairs) computed for
some metric gµν is the same as that computed for the conformal metric given by ω2(x)gµν ,
where ω(x) is a nonvanishing arbitrary function of spacetime. Show that the Weyl tensor
is invariant by a conformal transformation.

2. Curvature: hands on

(a) Consider again the two sphere S2 with metric

ds2 = a2
(
dθ2 + sin2 θdφ2

)
Compute all the components of the Riemann tensor.

(b) Consider now the three sphere in coordinates xµ = (ψ, θ, φ) with metric

ds2 = dψ2 + sin2 ψ
(
dθ2 + sin2 θdφ2

)
Compute all Christoffel connection coefficients, Riemann tensor, Ricci tensor and Ricci
scalar.
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