Exercises on Theoretical Particle Physics

Prof. Dr. H.-P. Nilles

-CLASS EXERCISES-

C1.1 The Little Group

In this exercise we want to explore the little group under which particle states transform. A general group action of a group G on a set X will be denoted by

$$G \times X \longrightarrow X$$
$$(g, x) \longmapsto gx.$$

Then the little group of an element $x \in X$ is the set of transformations which leaves x invariant, i.e.

$$G_x := \{g \in G \mid gx = x\}.$$

- (a) Show that G_x is indeed a subgroup of G.
- (b) In particle physics we are interested in the little group of the momentum of a particle as a subgroup of the Lorentz group. Denoting by $p^{\mu} \in \mathbb{R}^{1,3}$ the momentum of a four dimensional particle, we find the condition

$$\Lambda^{\mu}_{\ \nu}p^{\nu} = p^{\mu}, \qquad \Lambda \in SO(1,3).$$

How does this condition translate to the Lie algebra $\mathfrak{so}(1,3)$?

(c) A basis of $\mathfrak{so}(1,3)$ is given by the matrices

$$(M^{\mu\nu})^{\rho}_{\sigma} = \mathrm{i} \left(\eta^{\mu\rho} \delta^{\nu}_{\sigma} - \eta^{\nu\rho} \delta^{\mu}_{\sigma} \right) \,.$$

Now we look at a massive particle. Its momentum can be rotated to the form $p^{\mu} = (m, 0, 0, 0)$. Which generators leave p^{μ} invariant? What is the little group of a massive state?

(d) The momentum of a massless particle can be chosen $p^{\mu} = (p, 0, 0, p)$. Find three (linear combinations of) generators which leave p^{μ} invariant. Describe the corresponding group action. The group they generate is isomorphic to the so-called Euclidean group E(2).

(e) Show that two of these three generators correspond to non-compact directions by explicitly computing the group elements. Find the maximal compact subgroup of E(2). Since non-trivial irreducible representations of non-compact groups are infinite dimensional, we restrict the little group of massless particles to the maximal compact subgroup by projecting the states onto their representations.

C1.2 Massive and massless Vector Bosons.

In this exercise we want to apply the things we just learned about little groups to the particular example of a vector boson. Consider first a massive vector boson A_{μ} described by the Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{m^2}{2} A^{\mu} A_{\mu} \,,$$

where as usual $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

(a) Derive the equations of motion

$$\partial^{\mu}\partial_{\mu}A^{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} + m^{2}A^{\nu} = 0.$$

- (b) Deduce from the e.o.m. that every component satisfies the Klein–Gordon equation and that there is an additional condition of the form $\partial_{\mu}A^{\mu} = 0$. This condition reduces the number of degrees of freedom from four to three as required for a vector representation of SO(3).
- (c) Now we consider the massless case m = 0. Show that the massless Lagrangian is invariant under gauge transformations $A_{\mu} \to A_{\mu} + \partial_{\mu} \chi$.
- (d) Show that we can use this gauge freedom to fulfill the Lorentz gauge condition $\partial_{\mu}A^{\mu} = 0$. How do the equations of motion then look like? *Hint: Use the Greens function of the d'Alembert operator* \Box .
- (e) For a massless particle state $A_{\mu}(x) = \epsilon_{\mu} e^{iq_{\nu}x^{\nu}}$ there is more freedom in the choice of a gauge. Show that a gauge transformation of the form $\chi(x) = c e^{iq_{\nu}x^{\nu}}$ does not spoil the Lorentz gauge condition. How does this transformation act on the polarization vector ϵ_{μ} ?
- (f) Choose $q_{\nu} = (q, 0, 0, q)$. Use c to set $\epsilon_0 = 0$. How does the Lorentz gauge condition further restrict ϵ_{μ} ? Find a basis of the remaining two-dimensional space of physical photon polarizations.