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–Class Exercises–

C 1.1 The Little Group
In this exercise we want to explore the little group under which particle states transform.
A general group action of a group G on a set X will be denoted by

G×X −→ X

(g, x) 7−→ gx .

Then the little group of an element x ∈ X is the set of transformations which leaves x
invariant, i.e.

Gx := {g ∈ G | gx = x} .

(a) Show that Gx is indeed a subgroup of G.

(b) In particle physics we are interested in the little group of the momentum of a particle
as a subgroup of the Lorentz group. Denoting by pµ ∈ R1,3 the momentum of a four
dimensional particle, we find the condition

Λµ
νp
ν = pµ , Λ ∈ SO(1, 3) .

How does this condition translate to the Lie algebra so(1, 3)?

(c) A basis of so(1, 3) is given by the matrices

(Mµν)ρσ = i (ηµρδνσ − ηνρδµσ) .

Now we look at a massive particle. Its momentum can be rotated to the form pµ =
(m, 0, 0, 0). Which generators leave pµ invariant? What is the little group of a massive
state?

(d) The momentum of a massless particle can be chosen pµ = (p, 0, 0, p). Find three (linear
combinations of) generators which leave pµ invariant. Describe the corresponding
group action. The group they generate is isomorphic to the so-called Euclidean group
E(2).
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(e) Show that two of these three generators correspond to non-compact directions by
explicitly computing the group elements. Find the maximal compact subgroup of
E(2). Since non-trivial irreducible representations of non-compact groups are infinite
dimensional, we restrict the little group of massless particles to the maximal compact
subgroup by projecting the states onto their representations.

C 1.2 Massive and massless Vector Bosons.
In this exercise we want to apply the things we just learned about little groups to the
particular example of a vector boson. Consider first a massive vector boson Aµ described
by the Lagrangian

L = −1

4
F µνFµν −

m2

2
AµAµ ,

where as usual Fµν = ∂µAν − ∂νAµ .

(a) Derive the equations of motion

∂µ∂µA
ν − ∂ν∂µAµ +m2Aν = 0 .

(b) Deduce from the e.o.m. that every component satisfies the Klein–Gordon equation and
that there is an additional condition of the form ∂µA

µ = 0. This condition reduces the
number of degrees of freedom from four to three as required for a vector representation
of SO(3).

(c) Now we consider the massless case m = 0. Show that the massless Lagrangian is
invariant under gauge transformations Aµ → Aµ + ∂µχ.

(d) Show that we can use this gauge freedom to fulfill the Lorentz gauge condition ∂µA
µ = 0.

How do the equations of motion then look like?Hint: Use the Greens function of the
d’Alembert operator �.

(e) For a massless particle state Aµ(x) = εµe
iqνxν

there is more freedom in the choice of a
gauge. Show that a gauge transformation of the form χ(x) = ceiqνx

ν
does not spoil the

Lorentz gauge condition. How does this transformation act on the polarization vector
εµ?

(f) Choose qν = (q, 0, 0, q). Use c to set ε0 = 0. How does the Lorentz gauge condition
further restrict εµ? Find a basis of the remaining two-dimensional space of physical
photon polarizations.
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