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H 9.1 Group-theoretical GUT breaking 6 points

We believe that the SM gauge group unifies to one simple Lie algebra (e. g. su(5)) which is
broken at very high energies O(1016 GeV). Representations of such Grand Unified Theory
(GUT) group decompose into those of the SM gauge group. Hence, tools for this group-
theoretical symmetry breaking have to be applied.

Dynkin’s Symmetry Breaking: To each simple root one assigns an integer number,
called the Kac̆-label ai. They are given as the coefficients of the decomposition of the
highest root in the basis of simple roots. Deleting any node with Kac-label ai = 1 from
the Dynkin diagram gives a maximal regular subalgebra times a U(1) factor.

(a) In the case of SU(5), all Kac̆-labels are 1. Apply Dynkin’s rule to find the symmetry
breaking yielding the SM gauge group, i. e.

SU(5)→ SU(3)× SU(2)× U(1) .

The U(1) generator is constructed as a Cartan element of SU(5) such that it is
annihilated by all roots of SU(3) × SU(2). Show that Q = diag(−2,−2,−2, 3, 3)
fulfills these conditions. (1 point)

(b) The 5 is a reducible representation of the subgroup SU(3)×SU(2)×U(1). Let α1 and
α2 correspond to SU(3) and α4 to SU(2). Thus, every weight λ of SU(5) decomposes
as

λ = (λ1, λ2, λ3, λ4)→ (λ1, λ2|λ4) = (µ|ν).

First, write down all weights (µ|ν), then find the highest weight µ and determine
all weights and the dimension of the corresponding representation. Consider now
the values of ν belonging to this µ-representation and state the dimension of the
ν-representation! Repeat these steps starting with the highest weight ν. Finally,
determine the U(1) charge by applying the U(1) generator to the weight vectors.
The result reads

5→ (3,1)−2 ⊕ (1,2)3.

(1 point)
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(c) Repeat the analysis for the representation 10 and verify

10→ (1,1)6 ⊕ (3,1)−4 ⊕ (3,2)1.

Hint: All weights which appear in the calculation have multiplicity 1. (1.5 points)

(d) Perform the breaking for the representation corresponding to the highest weight with
Dynkin coefficients (1, 0, 0, 1), i. e. the adjoint 24. The result reads

24→ (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)5 ⊕ (3,2)−5.

Identify the gauge bosons of the standard model. (1.5 points)

Hint: All weights which appear in the calculation have multiplicity 1, except for
(0, 0, 0, 0) in 24 of SU(5) with multiplicity 4 and (0, 0) in 8 of SU(3) with multiplicity
2. What is the origin of this?

After a renormalization of the U(1) generator to Q′ = 1
6
Q we recover one family of the

standard model in 5⊕ 10.

H 9.2 Dynamical GUT breaking 4 points

It is necessary to generalize the Higgs mechanism of the SM to understand the symmetry
breaking of any GUT theory to the SM. Thus, we describe the Higgs mechanism for a field
H in an arbitrary representation ρ of a semi-simple Lie algebra g.

(a) Consider a complex scalar H in the representation ρ of a gauge group G. Assume
further that H acquires a vev 〈H〉 due to some potential. Deduce from the kinetic
term

(DµH)∗ (DµH)|1 =
(
∂µH + igρ(T a)AaµH

)∗ (
∂µH + igρ(T b)AbµH

)∣∣
1
,

that a gauge boson Aaµ is massless, if ρ(T a) 〈H〉 = 0. Then, T a belongs to the
unbroken gauge group G ′.
Specialize to H in the adjoint representation with the kinetic term Tr(DµH)†(DµH)
and deduce

T a ∈ G ′ if [T a, 〈H〉] = 0, T a /∈ G ′ if [T a, 〈H〉] 6= 0.

Let us apply this for the desired symmetry breaking by introducing a Higgs field in
the adjoint of SU(5), i. e. a 5× 5 hermitian traceless matrix.1 We work with a scalar
potential invariant under H → −H of the form

V (H) = −m2Tr
(
H2
)

+ λ1

(
Tr
(
H2
))2

+ λ2Tr
(
H4
)
.

(1 point)

1Note that this is not the SM-Higgs field, which is contained in the 5.
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(b) First, use the previous results to argue that a Higgs field H precisely in the adjoint 24
is an appropriate choice to break SU(5) to the SM. Which component of 24 should
develop the VEV? (cf. exercise H 9.1 (d)) Use the gauge symmetry H → H ′ = UHU †

to obtain

H = diag(h1, h2, h3, h4, h5)

and check that the minimum of the potential is given by the same equation ∀hi:

4λ2h
3
i + 4λ1ahi − 2m2hi − µ = 0 with a =

∑
j

h2
j , ∀i = 1, . . . , 5. (1)

Here µ is a Lagrange multiplier necessary to impose the constraint
∑

i hi = 0.

The cubic equation (1) has at most three roots denoted by φ1, φ2, φ3. Thus, there
are at most three different eigenvalues hi ∈ {φ1, φ2, φ3}. Let ni be the multiplicity of
the eigenvalue φi, i = 1, 2, 3, in 〈H〉:

〈H〉 := diag(φi1 , . . . , φi5) with n1φ1 + n2φ2 + n3φ3 = 0.

(1 point)

(c) Following part (a), what is the most general symmetry breaking of SU(5)? What
happens to the rank of the gauge group? Consider also possible U(1) factors. De-
pending on the relative magnitude of the parameters λ1 and λ2, the combinations
(3, 2, 0), (2, 2, 1) or (4, 1, 0) for (n1, n2, n3) minimize the potential. Thus,

case1: SU(5)→ SU(3)× SU(2)× U(1) , case2: SU(5)→ SU(4)× U(1) , (2)

which gives restrictions on phenomenologically reasonable values of λ1, λ2. (1 point)

(d) Focus on the first case and determine what is the most general form of 〈H〉. Then,
the breaking eq. (2) should be obvious. What is the generator of the U(1)? Compare
this to your result for Q in exercise H 9.1 (a). (1 point)

H.9.3 Dynkin diagram of so(2n) 10 points
The orthogonal groups are given by matrices which satisfy ATA = 1.

(a) Using the correspondence between elements of the group and elements of the Lie
algebra, A = expA ≈ 1 +A, show that the requirement is:

A+AT = 0 .

Clearly these matrices have only off-diagonal elements. As a result, it would be hard
to find the Cartan subalgebra as we did for su(n) by using diagonal matrices. To avoid
this problem, we perform a unitary transformation on the matrices A. (0.5 points)

(b) Use the ansatz A = UBU † with U unitary, define K = UTU to show that

BTKB = K .

Furthermore, expand B in the usual way B = expB ≈ 1 + B to get the condition:

BTK +KB = 0 . (3)

(1 point)
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(c) A convenient choice for U in the case of so(2n) is

U =
1√
2

(
i1 −i1
−1 −1

)
,

with 1 being the n× n identity matrix. What is the form of K? (0.5 points)

(d) We represent B in terms of n× n matrices Bi:

B =

(
B1 B2

B3 B4

)
.

Show that from Eq.(3) follows:

B1 = −BT4 , B2 = −BT2 , B3 = −BT3 .
A basis of 2n× 2n matrices fulfilling these conditions is given by (j, k ≤ n):

e1jk = ej,k − ek+n,j+n ,
e2jk = ej,k+n − ek,j+n j < k ,

e3jk = ej+n,k − ek+n,j j < k .

A basis for the Cartan subalgebra is given by hj = e1jj. So, a general element of the
Cartan subalgebra can be written as: (1 point)

h =
∑
i

λihi .

(e) Determine the eigenvalues of the adjoint of h, i. e.

ad(h) eajk = [h, eajk] = αea
jk

(h) eajk , a = 1, 2, 3 .

We infer that all roots are given by: (1.5 points)

αe1jk
(h) = (λj − λk) j 6= k ,

αe2jk
(h) = (λj + λk) j < k ,

αe3jk
(h) = −(λj + λk) j < k .

(f) Convince yourself that the following roots form a basis of all roots and are furthermore
positive and simple:

αi(h) = λi − λi+1 , i = 1 . . . n− 1 , αn(h) = λn−1 + λn .

Hint: Exercise H 8.1(d) (1 point)

(g) Show that the Killing form of two elements h and h′ of the Cartan subalgebra can
be written in general as

K(h, h′) = 4(n− 1)
∑
j

λjλ
′
j .

Hint: Exercise H 8.1(f) (1.5 points)

(h) Use the theorem of exercise H 8.1 and the result of the last part to obtain from

K(hαi
, h) = αi(h)

the coefficients λαi
j of hαi

. (1.5 points)

(i) Calculate the Cartan matrix and draw the Dynkin diagram of so(2n). (1.5 points)
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Reminder: SU(5) Dynkin Labels

• 5 of SU(5)

(1, 0, 0, 0) , (−1, 1, 0, 0) , (0,−1, 1, 0) , (0, 0,−1, 1) , (0, 0, 0,−1) .

• 10 of SU(5)

(0, 1, 0, 0) , (1,−1, 1, 0) , (−1, 0, 1, 0) , (1, 0,−1, 1) , (−1, 1,−1, 1) ,

(1, 0, 0,−1) , (0,−1, 0, 1) , (−1, 1, 0,−1) , (0,−1, 1,−1) , (0, 0,−1, 0) .

• 24 of SU(5)

(1, 0, 0, 1) , (−1, 1, 0, 1) , (1, 0, 1,−1) , (0,−1, 1, 1) , (−1, 1, 1,−1) ,

(1, 1,−1, 0) , (0, 0,−1, 2) , (0,−1, 2,−1) , (−1, 2,−1, 0) , (2,−1, 0, 0) ,

(0, 0, 0, 0) ,

and their negatives.
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