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This exercise sheet is devoted to the study of anomalies. Anomalies are classical symmetries
of a theory which are broken by quantum effects. The presence of (non—global) anomalies
renders a theory inconsistent. For this reason, anomalies have to be absent. Unfortunately,
ensuring the absence of anomalies is highly non-trivial. If it was not for String Theory,
which is anomaly free by construction, it would be extremely hard (or even impossible) to
construct consistent higher dimensional anomaly free theories.

Exercise 4.1: Anomalies in 4 dimensions (10 credits)

Consider a 4 dimensional theory with (Abelian or non-Abelian) gauge fields A§ and N
left—chiral Weyl fermions ¥; with gauge charges ¢f'. In 4 dimensions the Feynman graph
responsible for the anomaly is given in figure 1. Here, j; = 531% is the current coupling
to the gauge field A}, and a,b,c label various gauge symmetries which can occur in the
theory. The T* stand either for the Abelian charges ¢ or the non—Abelian generators in
the respective representation. The particles running in the loop are all N chiral fermions
in the theory. The graph leads to an anomalous variation of the path integral measure

which leads to an effective change of the action like
8 Sanom X / d*z X FP A Fe
where \* is the gauge parameter.
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Figure 1: 4D triangle anomaly graph



(a) We first discuss the case where all gauge symmetries are Abelian. Show that including
the charges ¢ of the fermions in the graph, the cancelation of the anomaly leads to
the condition

N
> il =0. (1)
i=1

Why is it sufficient to consider only massless fermions? (2 credits)

(b) Take the familiar Standard Model of particle physics. Show that (1) is indeed fulfilled
for T* = T = T° = Ty where Ty is the hypercharge generator. (2 credits)

(c) Next, consider one U(1) and one non—Abelian symmetry (e.g. SU(N)) with the par-
ticles transforming only in the trivial or in the fundamental and anti-fundamental
representation. Show that including group theory factors in the Feynman graphs
leads to the constraint

N

> IR) g =0.

i=1
Here [(R) is the quadratic Casimir in the respective representation, i.e.

[(R) = trgT*T*
Why is there no constraint containing two Abelian charges? (2 credits)

(d) Check by inserting the proper quantum numbers that the U(1)y — SU(2), — SU(2)y,
anomaly vanishes in the Standard Model. (2 credits)

(e) Finally we replace two gauge fields Az by universal graviton couplings. Show that
this leads to the constraint

N
> 4 =0.
i=1

Check that this is also fulfilled in the Standard Model. (2 credits)

Exercise 4.2: Anomalies in 10 dimensions for Type I Sting Theory (10 credits)

In this exercise, we motivate that the only chance you have for canceling the 10 dimensional
anomaly arising from the hexagonal graph with one simple Lie group as gauge group is
SO(32). The relevant anomaly graph in 10 dimensions is the hexagonal graph (which
is analogous to the triangle graph in 4 dimensions). Again, the external legs are gauge
bosons, and all massless particles run in the loop. The graph is given in figure 2a. By itself,
the hexagon anomaly is always present. It is only because of the contribution of another
diagram (the so—called Green—Schwarz counter term) given in figure 2b that there is the
possibility of canceling the anomaly. The counter term arises from an axionic coupling of
the Kalb-Ramond B-field. The anomaly given in figure 2a contains a factor traqF® where
F' is the field strength and traq is the trace in the adjoint representation in which the
gauge fields transform. However, the counter term in figure 2b does not contain traqF™®
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contributions but only traqF™ traqF? contributions. Hence, if we want to have a chance
of canceling the anomaly, traqF® has to factorize such that the pure F% term is absent.
Checking this factorization is best done by relating the trace traq in the adjoint to the

trace tren in the fundamental (vector) representation. We will do so for SO(2N) gauge
groups.
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The traces in the different representations are related most easily using Chern char-
acters. The Chern character is defined as

Chgr(F) :=trrexp(F).

Here, R stands for any representation of the group, and trg is the trace in represen-
tation R. Show that (2 credits)

(Z> ChR1®R2(F) = Cth (F) ’ Cth(F)7
(it)  Chr,er,(F) = Chr, (F) + Chg, (F).

For SO(2N) groups the adjoint representation Ad is given by the anti-symmetrized
product of two fundamental representations 2IN. Anti-symmetrization can be en-
sured by taking the determinant. The k—fold anti-symmetrized representation [R]
can thus be obtained from the generating function

)nfl

N
Z 2" Chygy, (F) = det r(1 + ze") = exp Z (_1—x" Chr(nF)
k=1

n
n>1
By expanding the relation to the relevant order, show that (3 credits)
1
Chian, (F) = Chaa(F) = 5 [(Chen(F))* — Chan(2F)] . (2)
By expanding (2) to the relevant powers, show that (5 credits)

traaF® = (2N — 32)tranFC + 15 tran B tran 2.

Hence the first term is only absent for SO(32). As the second term is always non—zero,
the hexagon anomaly never vanishes, so the Green—Schwarz counter term is really
essential for obtaining a consistent theory. It is of course still highly non—trivial to
check that all coefficients match such that the counter term does indeed cancel the
tron B4 tran B2 term, and that the mixed and pure gravitational anomalies are absent
for SO(32) as well. Similarly, one can show that the first term never vanishes for
USp(N) and U(N) groups.



