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H 10.1 Dynkin diagram of su(N) 2+2+1+2+1+3 = 11 points

In the last exercise (H 9.2) we introduced the Cartan subalgebra of su(N). There we also
defined the roots of this Lie algebra.
Let α1 . . . αr be a fixed basis of roots so every element of h∗ can be written as ρ =

∑
i ciαi.

We call ρ positive (ρ > 0) if the first non-zero coefficient ci is positive. Note, that the
basis roots αi are positive by definition. If the first non-zero coefficient ci is negative, we
call ρ negative. For ρ, σ ∈ h∗, we shall write ρ > σ if ρ − σ > 0. A simple root is a
positive root which can not be written as the sum of two positive roots.

(a) We choose a basis αi for the root space:

αi(h) = λi − λi+1, i = 1, 2, . . . , N − 1 .

Verify that these roots are a basis and that they are positive with α1 > α2 > . . . > αN−1.
Show that these roots are simple roots.

Next, we define a structure that resembles a scalar product on the algebra. Let ti be a
basis of the algebra, then the double commutator with any two algebra elements will be a
linear combination in the algebra:

[x, [y, ti]] =
∑
j

Kijtj .

The Killing form is then defined as K(x, y) := Tr(K).

(b) Prove that the Killing form on the Cartan subalgebra is bilinear and symmetric. (It
is, however, in general not positive definite and thus not a scalar product.) Determine
K(h, h′), where h =

∑
i λieii, h

′ =
∑

j λ
′
jejj.

The Killing form enables us to make a connection between the Cartan subalgebra, h, and
its dual h∗: One can prove that if α ∈ h∗, there exists a unique element hα ∈ h such that

α(h) = K(hα, h) ∀h ∈ h .
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(c) Calculate K(hαi
, h) with the help of the above theorem and find hαi

from comparison
with your result from (e).

With the help of the hα, we are now able to define a scalar product on h∗:

〈αi, αj〉 := K(hαi
, hαj

), where αi, αj ∈ h∗.

(d) Calculate the Cartan matrix, defined by

Aij :=
2〈αi, αj〉
〈αi, αi〉

.

The information about the algebra that is encoded in the Cartan matrix is complete
in the sense that it is equivalent to knowing all structure constants. There is one more
equivalent way of depicting the algebra information in drawing a Dynkin diagram:
To every simple root αi, we associate a small circle and join the small circles i and j
with AijAij (no summation, i 6= j) lines.

(e) Draw the Dynkin diagram for su(N).

(f) As an example, consider the Lie algebra of su(2). The step operators are given by

J± =
1

2
(σ1 ± iσ2) ,

and the Cartan subalgebra consists of the single element

h = J3 =
1

2
σ3 .

(i.1) Confirm that

e12 = J+, e21 = J− and h =
1

2
e11 −

1

2
e22 .

(i.2) Calculate αJ±(J3).

(i.3) Choose α1 = αJ+ as the basis root, which is positive and simple. For α1 ∈ h∗,
find the unique element hα1 ∈ h such that

α1(h) = K(hα1 , h) ∀h ∈ h .

Hint: The solution is hα1 = 1
2
J3.

(i.4) Calculate the Killing form K(hα1 , hα2) and draw the Dynkin diagram.

H 10.2 Representations of su(N) 1+1+1+1+5 = 9 points

(a) Recall the definition of the adjoint ad a(b) := [a, b].
Show that the adjoint is a representation of the Lie algebra

ad
(
[a, b]

)
= [ad a, ad b] , for a, b ∈ g .
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PLEASE NOTE!

♣ The bracket [· , ·] on the left-hand side denotes the abstract Lie-bracket, but on the
right-hand side it denotes the commutator.

♣ The adjoint representation ad of a Lie algebra g on a vector space V is a linear
mapping ad : g → End(V ), where V is equal to the Lie algebra itself, i .e. V = g

This means that when we computed the Dynkin diagram of SU(N), we implicitly
used the adjoint representation of SU(N):

adh(eab) = [h, eab] . (1)

Furthermore, we had the eigenvalue equation

adh(eab) = αeab
(h) eab , (2)

which defined the roots αeab
.

This eigenvalue equation can now be generalized to non-adjoint representations ρ on
some vector space V . Let φi be a basis of V . We denote the representations of the
elements of the Cartan subalgebra h ∈ H by ρ(h) and the representations of the
step operators eα by ρ(eα). Then eq. (2) reads: ρ(h)φi = M i(h)φi. Since the linear
functions M i act on elements h ∈ H and give (real) numbers, they are elements of
the dual space H∗. They are called weights. The corresponding vectors φi are called
weight vectors. Note that roots are the weights of the adjoint representation!
You may have already gotten that simple roots αj span H∗, so it is possible to
reexpress the weights by simple roots M i =

∑
j cijαj, where the coefficients cij are

in general are in general non-integers. A weights M i is called positive, if the first
non-zero coefficients is positive. We write M i > M j, if M i −M j > 0.
A weight is called the highest weight, denoted by Λ, if Λ > M i ∀M i 6= Λ

(b) Suppose that φi is a weight vector with weight M i. Show that ρ(eα)φi is a weight
vector with weight M i + α unless ρ(eα)φi = 0.
Hint Use eqs. (1) and (2) and the fact that ρ is a representation. Thus it makes sense
to think of the ρ(eα) as raising operators and the ρ(e−α) as lowering operators.

(c) Consider now a representation ρ of SU(N). We denote the generators ρ(ta). For
elements of the Cartan subalgebra, we may also write ρ(h). Follow from

[ρ(ta), ρ(tb)] = i fabc ρ(tc) ,

that −ρ(ta)
∗ forms a representation, called the complex conjugate of ρ. We denote it

by ρ. ρ is said to be a real representation if it is equivalent to its complex conjugate.

(d) Show that if M i is a weight in ρ, −M i is a weight in ρ.
Hint: Use the fact that Cartan generators are hermitean and the definitions on the
previous exercise sheet.

Now we are well equipped to construct the representations. For a finite dimensional rep-
resentation we will find a state with highest weight Λ, which is annihilated by all positive
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root operators. Then we can get all states by acting with the lowering operators on it. In
order to do this, we present the weights by the Dynkin labels

mi :=
2〈M,αi〉
〈αi, αi〉

.

where M denotes a weight. The dynkin labels always consist of integer numbers which for
a highest weight state are non-negative. It is easy to see that acting with E−αi

corresponds
to substracting the ith row of the Cartan matrix from the Dynkin label. Now you can
construct all irreducible representations via the following procedure:

♦ start with the Dynkin label m with non-negative entries, representing the highest weight state
♦ if the ith entry of the Dynkin label mi is positive, you can get mi new states by substracting mi

times the ith row of the Cartan matrix
♦ repeat the last step for all new steps, for i = 1 . . . r
♦ at the end you should arrive at the lowest weight state with only non-positive entries in the Dynkin

label.

(e) Construct the 5 and the 10 of su(5) with the highest Dynkin labels (1, 0, 0, 0) and
(0, 1, 0, 0). What are the higest Dynkin labels of the 5 and the 10? Also, construct the
adjoint, the 24, from the Dynkin label (1, 0, 0, 1). How can you see that it is real?
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