\relax \citation{GW} \citation{GW} \citation{CS} \citation{Banks} \citation{RH} \citation{CGNW} \citation{FCNC} \citation{KB} \citation{FCNC} \citation{Frank} \citation{KB} \citation{Isidori} \citation{Dedes1} \citation{ADKT} \citation{Ambrosio} \citation{Buras} \citation{MTW} \citation{IN} \citation{LN} \citation{CKM} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}} \newlabel{sec:intro}{{1}{2}} \citation{CEPW} \@writefile{toc}{\contentsline {section}{\numberline {2}Resummed FCNC effective Lagrangian}{3}} \newlabel{sec:sec2}{{2}{3}} \newlabel{lag}{{2.1}{3}} \newlabel{Eg}{{2.2}{3}} \newlabel{Eu}{{2.3}{3}} \newlabel{Ixyz}{{2.4}{3}} \newlabel{masslag}{{2.5}{3}} \citation{KB} \newlabel{rotation}{{2.6}{4}} \newlabel{diago}{{2.7}{4}} \newlabel{Mu}{{2.8}{4}} \newlabel{hd}{{2.9}{4}} \newlabel{Rhat}{{2.10}{4}} \newlabel{LYeff}{{2.11}{4}} \newlabel{Rhdec}{{2.12}{4}} \citation{KB} \citation{Isidori} \citation{Ambrosio} \citation{Buras} \citation{KB} \citation{Isidori} \citation{Ambrosio} \citation{Buras} \newlabel{chiFC}{{2.13}{5}} \newlabel{cbk}{{2.14}{5}} \citation{comment} \citation{APLB} \citation{CEPW} \citation{PW} \newlabel{Epars}{{2.15}{6}} \newlabel{Ro}{{2.16}{6}} \newlabel{CPtr}{{2.17}{6}} \newlabel{master}{{2.18}{6}} \citation{GIM} \citation{CEPW} \newlabel{couplings}{{2.19}{7}} \citation{kaonrev} \citation{Neubert} \citation{Branco} \citation{Jager} \@writefile{toc}{\contentsline {section}{\numberline {3}Applications to $K$- and $B$-meson systems}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}${\Delta M_K}$, ${\epsilon _K}$ and $\epsilon '/\epsilon $}{8}} \newlabel{DS2}{{3.1}{8}} \newlabel{operbasis}{{3.2}{8}} \citation{Jager} \citation{Chankowski} \citation{Jager} \citation{Ciuchini} \citation{Misiak} \citation{Becirevic} \citation{Chankowski} \citation{Jager} \citation{Chankowski} \citation{Isidori} \citation{Buras} \citation{DER} \newlabel{Kme}{{3.6}{9}} \newlabel{Pbars}{{3.7}{9}} \newlabel{dpkaon}{{3.8}{9}} \citation{Chankowski} \citation{Isidori} \citation{Isidori} \citation{Chankowski} \citation{Buchalla} \newlabel{2HDM}{{3.9}{10}} \newlabel{par}{{3.10}{10}} \newlabel{Ksusy}{{3.11}{10}} \newlabel{qhiggs}{{3.12}{10}} \citation{Banks} \citation{EAP} \citation{Bosch} \citation{Guidice} \citation{epeSUSY} \citation{Kagan:1999iq} \newlabel{ee6}{{3.13}{11}} \newlabel{direct}{{3.14}{11}} \citation{Bosch} \citation{CEPW} \citation{Nir} \newlabel{HSPd}{{3.15}{12}} \newlabel{HSPu}{{3.16}{12}} \newlabel{eprimexp}{{3.17}{12}} \newlabel{boundepe}{{3.18}{12}} \newlabel{eprimapprox}{{3.19}{12}} \newlabel{QLRSP}{{3.20}{12}} \citation{Jager} \citation{Ciuchini} \citation{Misiak} \citation{Becirevic} \citation{Chankowski} \citation{FCNC} \citation{Frank} \citation{KB} \citation{Isidori} \citation{Dedes1} \citation{ADKT} \citation{Ambrosio} \citation{Buras} \citation{MTW} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}$\Delta M_{B_q}$, $B_q\to \ell ^+\ell ^-$ and associated CP asymmetries}{13}} \newlabel{Bsusy}{{3.22}{13}} \newlabel{DB1}{{3.24}{13}} \citation{Frank} \citation{Dedes2} \citation{IN} \citation{Liao} \newlabel{CSCP}{{3.26}{14}} \newlabel{Bll}{{3.28}{14}} \newlabel{FSP}{{3.29}{14}} \citation{Liao} \citation{PDG} \citation{Liao} \citation{IN} \citation{ACP} \newlabel{ACPlept}{{3.30}{15}} \newlabel{bmumuass}{{3.31}{15}} \newlabel{lq}{{3.32}{15}} \newlabel{AfCP}{{3.34}{15}} \citation{Nir} \citation{Gronau} \citation{Worah} \citation{Worah} \citation{Hiller} \citation{Nir} \newlabel{CSfCP}{{3.35}{16}} \newlabel{lam}{{3.36}{16}} \newlabel{lamappr}{{3.37}{16}} \newlabel{phiM}{{3.38}{16}} \newlabel{CS}{{3.39}{16}} \citation{Wyler} \citation{Wyler} \citation{Beneke} \newlabel{DCP}{{3.40}{17}} \newlabel{db1}{{3.41}{17}} \newlabel{OqSP}{{3.42}{17}} \newlabel{thetas}{{3.45}{17}} \citation{KB} \citation{MTW} \citation{IN} \@writefile{toc}{\contentsline {section}{\numberline {4}Numerical estimates}{18}} \citation{NH} \citation{PDG} \newlabel{scale}{{4.1}{19}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}${\Delta M_K}$ and $|\epsilon _K|$}{19}} \newlabel{expDmK}{{4.2}{19}} \newlabel{expek}{{4.3}{19}} \citation{CEPW} \citation{Nilles} \newlabel{VRV}{{4.4}{20}} \newlabel{express}{{4.5}{20}} \newlabel{VRVapprox}{{4.6}{21}} \newlabel{rgim}{{4.7}{21}} \citation{CEPW} \citation{PDG} \newlabel{sums}{{4.8}{22}} \newlabel{sum1}{{4.9}{22}} \newlabel{sum2}{{4.10}{22}} \citation{Ligeti} \citation{Anikeev} \citation{ADKT} \citation{Dedes1} \citation{PDG} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}$\Delta M_{B_q}$, $B_q\to \ell ^+\ell ^-$ and associated leptonic CP asymmetries}{23}} \newlabel{expBd}{{4.11}{23}} \newlabel{expBs}{{4.12}{23}} \newlabel{expBsmu}{{4.13}{23}} \newlabel{expBdtau}{{4.14}{23}} \citation{CPX} \citation{Dedes2} \citation{CPX} \citation{Hreview} \citation{CGNW} \citation{Bsgamma} \newlabel{CPX1}{{4.15}{25}} \newlabel{CPX2}{{4.16}{25}} \@writefile{toc}{\contentsline {section}{\numberline {5}Conclusions}{26}} \bibcite{GW}{1} \bibcite{CS}{2} \bibcite{Banks}{3} \bibcite{RH}{4} \bibcite{CGNW}{5} \bibcite{FCNC}{6} \bibcite{Frank}{7} \bibcite{KB}{8} \bibcite{Isidori}{9} \bibcite{Dedes1}{10} \bibcite{ADKT}{11} \bibcite{Ambrosio}{12} \bibcite{Buras}{13} \bibcite{MTW}{14} \bibcite{IN}{15} \bibcite{LN}{16} \citation{CGNW} \bibcite{CKM}{17} \bibcite{CEPW}{18} \bibcite{comment}{19} \citation{MTW} \citation{IN} \bibcite{APLB}{20} \bibcite{PW}{21} \bibcite{GIM}{22} \bibcite{kaonrev}{23} \bibcite{Neubert}{24} \bibcite{Branco}{25} \bibcite{Jager}{26} \bibcite{Chankowski}{27} \bibcite{Ciuchini}{28} \bibcite{Misiak}{29} \bibcite{DER}{30} \bibcite{Becirevic}{31} \bibcite{Buchalla}{32} \bibcite{EAP}{33} \bibcite{Bosch}{34} \bibcite{Guidice}{35} \bibcite{epeSUSY}{36} \bibcite{Kagan:1999iq}{37} \bibcite{Nir}{38} \bibcite{Dedes2}{39} \citation{Dedes1} \bibcite{Liao}{40} \bibcite{PDG}{41} \bibcite{ACP}{42} \citation{Branco} \citation{Nir} \bibcite{Gronau}{43} \bibcite{Worah}{44} \bibcite{Hiller}{45} \bibcite{Wyler}{46} \bibcite{Beneke}{47} \bibcite{NH}{48} \bibcite{Nilles}{49} \bibcite{Ligeti}{50} \bibcite{Anikeev}{51} \bibcite{CPX}{52} \bibcite{Hreview}{53} \bibcite{Bsgamma}{54} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces {\it Schematic representation of the SUSY mass spectrum considered in our numerical analysis, where $m_{\mathaccent "707E\relax q}$ and $m_{\mathaccent "707E\relax t}$ denote the masses of the first two and third generations of squarks, respectively. The hierarchy factor $\rho $, the phase $\phi _{\mathaccent "707E\relax {g}}$ of the gluino mass, and the phases $\phi _{A_{t,b}}$ of the soft SUSY breaking trilinear couplings, with $\phi _{A_t} = \phi _{A_b} = \phi _{A_U}$, are varied independently (see also discussion in the text).}}}{32}} \newlabel{fig1}{{1}{32}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces {\it SUSY Higgs-DP contributions to $\epsilon _K$ and $\Delta M_K$ given in units of $10^{-12}$ MeV and $10^{-3}$, respectively, as functions of the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$ and $\delta _{\rm CKM} = 90^\circ $. As is shown above, the different curves are obtained for selected values of $\rho $ and $\phi _{A_U}$. The size of the 2HDM effect alone on $\epsilon _K$ is indicated by an arrow.}}}{33}} \newlabel{fig2}{{2}{33}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces {\it SUSY Higgs-DP contributions to $\epsilon _K$ and $\Delta M_K$ given in units of $10^{-12}$ MeV and $10^{-3}$, respectively, as functions of the hierarchy factor $\rho $, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and ${\rm arg}\, m_{\mathaccent "707E\relax {g}} = 180^\circ $, where the values of $\delta _{\rm CKM}$ and $\phi _{A_U}$ are varied discretely.}}}{34}} \newlabel{fig3}{{3}{34}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces {\it SM and SUSY Higgs-DP contributions to $\Delta M_{B_d}$ and $\Delta M_{B_s}$ as functions of the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$ and $\delta _{\rm CKM} = 90^\circ $, where the hierarchy factor $\rho $ and $\phi _{A_U}$ are varied independently as shown above. The SM contributions alone for $\delta _{\rm CKM} = 90^\circ $ are displayed by horizontal dashed lines.}}}{35}} \newlabel{fig4}{{4}{35}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces {\it SM and SUSY Higgs-DP contributions to $\Delta M_{B_d}$ and $\Delta M_{B_s}$ versus the hierarchy factor $\rho $, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and ${\rm arg}\, m_{\mathaccent "707E\relax {g}} = 180^\circ $, where $\delta _{\rm CKM}$ and $\phi _{A_U}$ obtain discrete values as shown above. Also shown are the SM effects alone for different choices of the CKM phase $\delta _{\rm CKM}$ (horizontal dashed lines).}}}{36}} \newlabel{fig5}{{5}{36}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces {\it SUSY Higgs-penguin contributions to ${\cal B} (\mathaccent "7016\relax {B}^0_s \to \mu ^+\mu ^-)$ and ${\cal B} (\mathaccent "7016\relax {B}^0_d \to \tau ^+\tau ^-)$ versus the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and $\delta _{\rm CKM} = 90^\circ $, where $\rho $ and $\phi _{A_U}$ are varied discretely.}}}{37}} \newlabel{fig6}{{6}{37}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces {\it SUSY Higgs-penguin contributions to ${\cal B} (\mathaccent "7016\relax {B}^0_s \to \mu ^+\mu ^-)$ and ${\cal B} (\mathaccent "7016\relax {B}^0_d \to \tau ^+\tau ^-)$ as functions of the hierarchy factor $\rho $, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and ${\rm arg}\, m_{\mathaccent "707E\relax {g}} = 180^\circ $, where $\delta _{\rm CKM}$ and $\phi _{A_U}$ take discrete values.}}}{38}} \newlabel{fig7}{{7}{38}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces {\it Numerical values for the CP asymmetries ${\cal A}_{\rm CP}^{(B^0_d \to \mu ^+_L\mu ^-_L )}$ and ${\cal A}_{\rm CP}^{(B^0_d \to \mu ^+_R\mu ^-_R )}$ as functions of the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and $\delta _{\rm CKM} = 90^\circ $, where $\rho $ and $\phi _{A_U}$ are varied discretely. Also shown is the prediction for the CP asymmetries without including $B^0_d$-$\mathaccent "7016\relax {B}^0_d$ mixing.}}}{39}} \newlabel{fig8}{{8}{39}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces {\it Numerical estimates of the CP asymmetries ${\cal A}_{\rm CP}^{(B^0_d \to \tau ^+_L\tau ^-_L )}$ and ${\cal A}_{\rm CP}^{(B^0_d \to \tau ^+_R\tau ^-_R )}$ versus the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and $\delta _{\rm CKM} = 90^\circ $, where $\rho $ and $\phi _{A_U}$ take discrete values as shown above.}}}{40}} \newlabel{fig9}{{9}{40}}