\relax \citation{GW} \citation{GW,CS} \citation{Banks,RH} \citation{FCNC,BK} \citation{FCNC,BK,CGNW,FCNCCP,Frank,Isidori,Dedes1,ADKT,Ambrosio,Buras,MTW,IN} \citation{CKM} \citation{GIM} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}} \newlabel{sec:intro}{{1}{2}} \citation{CGNW} \citation{BK,Isidori,Ambrosio,Buras} \citation{FCNC,BK} \citation{CEPW} \citation{RH,FCNC,BK} \@writefile{toc}{\contentsline {section}{\numberline {2}Resummed FCNC effective Lagrangian}{3}} \newlabel{sec:sec2}{{2}{3}} \newlabel{lag}{{2.1}{3}} \newlabel{Eg}{{2.2}{3}} \newlabel{Eu}{{2.3}{4}} \newlabel{Ixyz}{{2.4}{4}} \newlabel{masslag}{{2.5}{4}} \newlabel{rotation}{{2.6}{4}} \newlabel{diago}{{2.7}{4}} \newlabel{Mu}{{2.8}{4}} \newlabel{hd}{{2.9}{4}} \newlabel{Rhat}{{2.10}{4}} \citation{BK} \citation{BK} \citation{Isidori,Ambrosio,Buras} \citation{BK,Isidori,Ambrosio,Buras} \newlabel{LYeff}{{2.11}{5}} \newlabel{Rhdec}{{2.12}{5}} \newlabel{chiFC}{{2.13}{5}} \newlabel{cbk}{{2.14}{5}} \citation{comment} \citation{APLB} \citation{CEPW} \newlabel{Epars}{{2.15}{6}} \newlabel{Ro}{{2.16}{6}} \citation{PW} \citation{GIM} \newlabel{CPtr}{{2.17}{7}} \newlabel{master}{{2.18}{7}} \newlabel{couplings}{{2.19}{7}} \citation{CEPW} \citation{LN} \citation{CGNW} \citation{kaonrev,Neubert,Branco} \@writefile{toc}{\contentsline {section}{\numberline {3}Applications to $K$- and $B$-meson systems}{8}} \citation{Jager} \citation{Jager,Chankowski} \citation{Jager,Ciuchini,Misiak,Becirevic,Chankowski} \citation{Jager} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}${\Delta M_K}$, ${\epsilon _K}$ and $\epsilon '/\epsilon $}{9}} \newlabel{DS2}{{3.1}{9}} \newlabel{operbasis}{{3.2}{9}} \newlabel{Kme}{{3.6}{9}} \citation{Chankowski,Isidori,Buras} \citation{Chankowski,Isidori} \citation{Isidori,Chankowski} \newlabel{Pbars}{{3.7}{10}} \newlabel{dpkaon}{{3.8}{10}} \newlabel{2HDM}{{3.9}{10}} \citation{Buchalla} \citation{Banks} \citation{EAP,Bosch} \citation{Guidice} \citation{epeSUSY,Kagan:1999iq} \newlabel{par}{{3.10}{11}} \newlabel{Ksusy}{{3.11}{11}} \newlabel{qhiggs}{{3.12}{11}} \newlabel{ee6}{{3.13}{11}} \citation{Bosch} \citation{CEPW} \citation{Nir} \newlabel{direct}{{3.14}{12}} \newlabel{HSPd}{{3.15}{12}} \newlabel{HSPu}{{3.16}{12}} \newlabel{eprimexp}{{3.17}{13}} \newlabel{boundepe}{{3.18}{13}} \newlabel{eprimapprox}{{3.19}{13}} \newlabel{QLRSP}{{3.20}{13}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}$\Delta M_{B_q}$, $B_q\to \ell ^+\ell ^-$ and associated CP asymmetries}{13}} \newlabel{Bsusy}{{3.22}{13}} \citation{Jager,Ciuchini,Misiak,Becirevic,Chankowski} \citation{FCNC,BK,FCNCCP,Frank,Isidori,Dedes1,ADKT,Ambrosio,Buras,MTW} \citation{DER} \newlabel{DB1}{{3.24}{14}} \newlabel{CSCP}{{3.26}{14}} \citation{Frank} \citation{Dedes2} \citation{IN} \citation{Liao} \citation{Liao} \newlabel{Bll}{{3.28}{15}} \newlabel{FSP}{{3.29}{15}} \newlabel{ACPlept}{{3.30}{15}} \newlabel{bmumuass}{{3.31}{15}} \citation{PDG} \citation{Liao,IN} \citation{BK} \newlabel{lq}{{3.32}{16}} \@writefile{toc}{\contentsline {section}{\numberline {4}Numerical estimates}{16}} \citation{MTW,IN} \citation{NH} \citation{PDG} \newlabel{scale}{{4.1}{17}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}${\Delta M_K}$ and $|\epsilon _K|$}{17}} \citation{CEPW} \citation{Nilles} \newlabel{expDmK}{{4.2}{18}} \newlabel{expek}{{4.3}{18}} \newlabel{VRV}{{4.4}{18}} \newlabel{express}{{4.5}{19}} \newlabel{VRVapprox}{{4.6}{19}} \newlabel{rgim}{{4.7}{19}} \citation{CEPW} \newlabel{sums}{{4.8}{20}} \newlabel{sum1}{{4.9}{20}} \newlabel{sum2}{{4.10}{20}} \citation{PDG} \citation{Ligeti} \citation{Anikeev,ADKT,Dedes1} \citation{PDG} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}$\Delta M_{B_q}$, $B_q\to \ell ^+\ell ^-$ and associated leptonic CP asymmetries}{21}} \newlabel{expBd}{{4.11}{21}} \newlabel{expBs}{{4.12}{21}} \newlabel{expBsmu}{{4.13}{21}} \newlabel{expBdtau}{{4.14}{21}} \citation{Buras} \citation{CPX} \citation{Dedes2} \citation{CPX,Hreview} \newlabel{CPX1}{{4.15}{23}} \newlabel{CPX2}{{4.16}{23}} \citation{Bsgamma1,Bsgamma2} \@writefile{toc}{\contentsline {section}{\numberline {5}Conclusions}{24}} \bibcite{GW}{1} \bibcite{CS}{2} \bibcite{Banks}{3} \bibcite{RH}{4} \bibcite{FCNC}{5} \bibcite{BK}{6} \bibcite{CGNW}{7} \bibcite{FCNCCP}{8} \bibcite{Frank}{9} \bibcite{Isidori}{10} \bibcite{Dedes1}{11} \bibcite{ADKT}{12} \bibcite{Ambrosio}{13} \bibcite{Buras}{14} \bibcite{MTW}{15} \bibcite{IN}{16} \bibcite{CKM}{17} \bibcite{GIM}{18} \bibcite{CEPW}{19} \bibcite{comment}{20} \citation{MTW} \citation{IN} \bibcite{APLB}{21} \bibcite{PW}{22} \bibcite{LN}{23} \citation{CGNW} \bibcite{kaonrev}{24} \bibcite{Neubert}{25} \bibcite{Branco}{26} \bibcite{Jager}{27} \bibcite{Chankowski}{28} \bibcite{Ciuchini}{29} \bibcite{Misiak}{30} \bibcite{Becirevic}{31} \bibcite{Buchalla}{32} \bibcite{EAP}{33} \bibcite{Bosch}{34} \bibcite{Guidice}{35} \bibcite{epeSUSY}{36} \bibcite{Kagan:1999iq}{37} \bibcite{Nir}{38} \bibcite{DER}{39} \bibcite{Dedes2}{40} \citation{Dedes1} \bibcite{Liao}{41} \bibcite{PDG}{42} \bibcite{NH}{43} \bibcite{Nilles}{44} \bibcite{Ligeti}{45} \bibcite{Anikeev}{46} \bibcite{CPX}{47} \bibcite{Hreview}{48} \bibcite{Bsgamma1}{49} \bibcite{Bsgamma2}{50} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces {\it Schematic representation of the SUSY mass spectrum considered in our numerical analysis, where $m_{\mathaccent "707E\relax q}$ and $m_{\mathaccent "707E\relax t}$ denote the masses of the first two and third generations of squarks, respectively. The hierarchy factor $\rho $, the phase $\phi _{\mathaccent "707E\relax {g}}$ of the gluino mass, and the phases $\phi _{A_{t,b}}$ of the soft SUSY breaking trilinear couplings, with $\phi _{A_t} = \phi _{A_b} = \phi _{A_U}$, are varied independently (see also discussion in the text).}}}{30}} \newlabel{fig1}{{1}{30}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces {\it SUSY Higgs-DP contributions to $\epsilon _K$ and $\Delta M_K$ given in units of $10^{-12}$ MeV and $10^{-3}$, respectively, as functions of the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$ and $\delta _{\rm CKM} = 90^\circ $. As is shown above, the different curves are obtained for selected values of $\rho $ and $\phi _{A_U}$. The size of the 2HDM effect alone on $\epsilon _K$ is indicated by an arrow.}}}{31}} \newlabel{fig2}{{2}{31}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces {\it SUSY Higgs-DP contributions to $\epsilon _K$ and $\Delta M_K$ given in units of $10^{-12}$ MeV and $10^{-3}$, respectively, as functions of the hierarchy factor $\rho $, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and ${\rm arg}\, m_{\mathaccent "707E\relax {g}} = 180^\circ $, where the values of $\delta _{\rm CKM}$ and $\phi _{A_U}$ are varied discretely.}}}{32}} \newlabel{fig3}{{3}{32}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces {\it SM and SUSY Higgs-DP contributions to $\Delta M_{B_d}$ and $\Delta M_{B_s}$ as functions of the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$ and $\delta _{\rm CKM} = 90^\circ $, where the hierarchy factor $\rho $ and $\phi _{A_U}$ are varied independently as shown above. The SM contributions alone for $\delta _{\rm CKM} = 90^\circ $ are displayed by horizontal dashed lines.}}}{33}} \newlabel{fig4}{{4}{33}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces {\it SM and SUSY Higgs-DP contributions to $\Delta M_{B_d}$ and $\Delta M_{B_s}$ versus the hierarchy factor $\rho $, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and ${\rm arg}\, m_{\mathaccent "707E\relax {g}} = 180^\circ $, where $\delta _{\rm CKM}$ and $\phi _{A_U}$ obtain discrete values as shown above. Also shown are the SM effects alone for different choices of the CKM phase $\delta _{\rm CKM}$ (horizontal dashed lines).}}}{34}} \newlabel{fig5}{{5}{34}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces {\it SUSY Higgs-penguin contributions to ${\cal B} (\mathaccent "7016\relax {B}^0_s \to \mu ^+\mu ^-)$ and ${\cal B} (\mathaccent "7016\relax {B}^0_d \to \tau ^+\tau ^-)$ versus the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and $\delta _{\rm CKM} = 90^\circ $, where $\rho $ and $\phi _{A_U}$ are varied discretely.}}}{35}} \newlabel{fig6}{{6}{35}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces {\it SUSY Higgs-penguin contributions to ${\cal B} (\mathaccent "7016\relax {B}^0_s \to \mu ^+\mu ^-)$ and ${\cal B} (\mathaccent "7016\relax {B}^0_d \to \tau ^+\tau ^-)$ as functions of the hierarchy factor $\rho $, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and ${\rm arg}\, m_{\mathaccent "707E\relax {g}} = 180^\circ $, where $\delta _{\rm CKM}$ and $\phi _{A_U}$ take discrete values.}}}{36}} \newlabel{fig7}{{7}{36}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces {\it Numerical values for the CP asymmetries ${\cal A}_{\rm CP}^{(B^0_d \to \mu ^+_L\mu ^-_L )}$ and ${\cal A}_{\rm CP}^{(B^0_d \to \mu ^+_R\mu ^-_R )}$ as functions of the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and $\delta _{\rm CKM} = 90^\circ $, where $\rho $ and $\phi _{A_U}$ are varied discretely. Also shown is the prediction for the CP asymmetries without including $B^0_d$-$\mathaccent "7016\relax {B}^0_d$ mixing.}}}{37}} \newlabel{fig8}{{8}{37}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces {\it Numerical estimates of the CP asymmetries ${\cal A}_{\rm CP}^{(B^0_d \to \tau ^+_L\tau ^-_L )}$ and ${\cal A}_{\rm CP}^{(B^0_d \to \tau ^+_R\tau ^-_R )}$ versus the gluino phase ${\rm arg}\, (m_{\mathaccent "707E\relax {g}})$, for $M_{\rm SUSY} = 1$\nobreakspace {}TeV, $M_{H^+} = 0.2$\nobreakspace {}TeV, $\mathop {\mathgroup \symoperators tan}\nolimits \beta = 50$, and $\delta _{\rm CKM} = 90^\circ $, where $\rho $ and $\phi _{A_U}$ take discrete values as shown above.}}}{38}} \newlabel{fig9}{{9}{38}}