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Chapter 1

Preliminaries

1.1 About These Notes

These are the full lecture notes, i.e. including up to Chapter 6, which deals with repre-
sentations of Lie algebras. Most likely there are still errors – please report them to me
so I can fix them in later versions!

When reading the notes, you should also do the exercises which test your under-
standing and flesh out the concepts with explicit examples and calculations. Doing the
exercises is what makes you learn this (and any other) topic!

1.2 Time and Place

This is a three-hour course. Lectures will be on Wednesday from 14 to 16 and on Friday
from 9 to 10. Since lecture period is from April 12 to July 23, with a break from May
25 to 29, i.e. 14 weeks, and Dies Academicus on Wednesday May 19, there will be
13 two-hour and 14 one-hour lectures.

The problem sheets, lecture notes (chapter by chapter, delayed
with respect to the lecture) and further information will be posted on
http://www.th.physik.uni-bonn.de/nilles/people/luedeling/grouptheory/

1.3 Tutorials

There are three tutorial groups:

• Monday 10–12, Raum 5 AVZ, Thomas Wotschke

• Tuesday 10–12, Raum 5 AVZ, Daniel Lopes

• Wednesday 10–12, Raum 118 AVZ (Hörsaal), Marco Rauch.

Problems will be handed out in week n, solved during the week, collected and discussed
in week n + 1, corrected during the next week and returned in week n + 2. Problems
can be solved in groups of two students.
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1.4 Exam and Requirements

To be allowed in the exam, a student needs to have obtained 50 % of the problem sheet
points AND presented two solution on the blackboard.

Exam will be written the on the first Tuesday after the term, July 27. If required, a
resit will be offered at the end of the term break, i.e. late September or early October.

1.5 Literature

There are many books on this subject, ranging from formal to applied. Here I give
a selection. Furthermore, many lecture notes are available on the web. In particular,
I have partially followed the lecture notes of Michael Ratz (TU Munich), which are
unfortunately not freely available on the web.

• H. Georgi, “Lie Algebras In Particle Physics. From Isospin To Unified Theories,”
Westview Press (Front. Phys. 54) (1982) 1.
A classic, very accessible. A second edition has come out in 1999, containing also
a nice chapter on discrete groups.

• M. Hamermesh, “Group Theory and Its Application to Physical Problems,”
Addison–Wesley Publishing (1962)
A classical reference, in particular for discrete groups and applications in
quantum mechanics.

• H. Weyl,“Quantum mechanics and group theory,” Z. Phys. 46 (1927) 1.
One of the original foundations of the use of symmetry in quantum mechanics

• R. N. Cahn, “Semisimple Lie Algebras And Their Representations,” Menlo Park,
USA: Benjamin/Cummings ( 1984) 158 P. ( Frontiers In Physics, 59) (Available
online at http://phyweb.lbl.gov/~rncahn/www/liealgebras/book.html)
Short book, available for free

• H. F. Jones, “Groups, representations and physics,” Bristol, UK: Hilger (1990)
287 p
Also discusses finite groups and quantum mechanics, mathematically simple

• R. Gilmore, “Lie Groups, Lie Algebras, and Some of Their Applications,” New
York, USA: Wiley Interscience (1974)
Covers mainly mathematical aspects of Lie groups, supplies some proofs omitted
in the lecture

• W. Fulton and R. Harris, “Representation Theory: A First Course”, Springer
Graduate Text in Mathematics 1991
Modern Treatment, mathematical but very accessible
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• J. Fuchs and C. Schweigert, “Symmetries, Lie Algebras And Representations: A
Graduate Course For Physicists,” Cambridge, UK: Univ. Pr. (1997) 438 p
Rather formal and advanced treatment, for the mathematically interested

• R. Slansky, “Group Theory For Unified Model Building,” Phys. Rept. 79, 1
(1981).
Invaluable reference: Contains a large appendix with loads of tables of
representations and branching rules.

• M. Nakahara, “Geometry, topology and physics,” Bristol, UK: Institute of
Physics Publishing (2003) 596 p. (Graduate student series in physics)
Very useful book, covers in particular the differential geometry aspects of Lie
groups. Generally recommended for particle theorists.
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Chapter 2

Groups: General Properties

2.1 Motivation: Why Group Theory?

Why are there lectures called “Group Theory for Physicists”? In the end, this is a math-
ematical subject, so why don’t students interested in the topic attend a mathematics
lecture? After all, there are very few lectures like “Number Theory for Physicists”. This
is captured in a statement made by James Jeans in 1910 while discussing a syllabus1:
“We may as well cut out the group theory. That is a subject that will never be of any
use in physics.”

Only few decades later, however, Heisenberg said2 “We will have to abandon the
philosophy of Democritus and the concept of elementary particles. We should accept
instead the concept of elementary symmetries.” This explains why group theory is im-
portant in almost any area of theoretical physics: It is the mathematics underlying the
concept of symmetry. By symmetry, here we roughly mean “a transformation which
leaves the physical situation unchanged”, and these naturally form groups (they can be
composed and undone). This implies that physical quantities appear in “multiplets”,
i.e. sets which transform among themselves. This is intuitively clear in Newtonian me-
chanics: You cannot sensibly add a scalar and the x-component of a vector, even if they
have the same units (such as e.g. energy and torque), because they behave differently
under a rotation of the frame of reference (the scalar is constant, the vector component
mixes with the y and z components). Hence, the sum will depend on the observer in a
weird way. But there are more things than scalars and vectors. In quantum mechanics,
this becomes more important.

As an example, consider the hydrogen atom. The Hamiltonian is invariant under
spatial rotations, i.e. if R is an operator corresponding to such a rotation, it commutes
with the Hamiltonian, [H0, R] = 0. Since the R’s form a group, called SO(3), this
immediately tells us that the eigenstates of H0 must come in representations of SO(3).
Group theory tells us that these representations are labelled by two numbers (l,m),
which we interpret as angular momentum and magnetic quantum number. Furthermore,

1Quoted in D MacHale, Comic Sections (Dublin 1993)
2Quoted in E Maor, To infinity and beyond (Princeton 1991)
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group theory tells us something about the allowed transitions: Since the decay of an
excited state is mediated by a perturbed Hamiltonian H = H0 + H1 containing the
electromagnetic field, the transition rate T between two states |nlm〉 and |n′l′m′〉 is
proportional to

T ∼ 〈nlm |H1|n′l′m′〉 . (2.1)

Again group theory gives us relations between different such operators in the form of the
Wigner–Eckart theorem. In particular, for H1 corresponding to dipole radiation, this
gives the familiar selection rules: T = 0 unless l = l′ ± 1 and m = m′ or m = m′ ± 1.
The power of symmetry is such that we do not even need to know anything about H
beyond its behaviour under rotations to deduce this. On the other hand, the symmetry
does not tell us the transition rate if the selection rules are satisfied.

This is a prototypical application of group theory: By identifying the symmetries, one
can find good quantum numbers to describe a physical state. Furthermore, symmetry
arguments tell us that many matrix elements vanish, or are given by linear combinations
of others. However, group theory does not necessarily determine the actual value allowed
matrix elements.

The outline of the course is as follows (unfortunately, I had to drop the Lorentz group
for lack of time):

1. Preliminaries: Done

2. General properties of groups: I will define a group and various basic concepts we
need later on.

3. Representations: Groups as such are just elements that can be multiplied. In
physics, they appear as operators acting on something, and this goes under the
name of representations. I will introduce the concept and a few basic properties.

4. Discrete groups: In this section I will discuss a class of groups which is crucial e.g.
in condensed matter physics, and their representations.

5. Compact Lie groups and Lie algebras: Lie groups are the most important groups
for particle physics. We will discuss some aspects of Lie groups, in particular
the connection to Lie algebras, which are something like a “local version” of the
groups. It turns out that the algebra captures most properties of the underlying
group, up to some aspects of the topology. We will see how to go form the group
to the algebra and back, and consider the matrix groups in more detail.

6. Representations of Lie algebras: The representation theory of Lie groups can be
reduced to the representations of Lie algebras. We will discuss the classification of
Lie algebras and their representations in general, and go into more detail for the
classical groups, in particular SU(n).
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2.2 Definition, Examples

Definition 1. A group is a set of elements G = {gi} together with a map (the “group
product”)

G × G −−−−−→ G

(g1, g2) 7−−−−−→ g1g2

satisfying the following properties:

1. Associativity: (g1g2) g3 = g1 (g2g3) for all gi ∈ G.

2. Identity: There is an element e (the “identity” or “unit element”) which satisfies
eg = g for all g ∈ G.

3. Inverse: For every g ∈ G, there is an “inverse element” g−1, such that g−1g = e.

Notes:

• The product is sometimes written as g1 · g2 or g1 ◦ g2. In concrete groups, it
can be realised e.g. by addition or multiplication of numbers or matrices or by
composition of maps. The specification of the product is part of the definition of
the group, so in principle one should write the group as (G, ◦) if the product is
denoted by ◦. However, we always omit the product symbol and assume it is clear
from the context what product is being used.

• In general, g1g2 6= g2g1!

• If g1g2 = g2g1 for all g1, g2 ∈ G, the group is called commutative or Abelian.
In that case, the “product” is often called addition and written accordingly, i.e.
g1g2 ≡ g1+g2, inverses are g−1 = −g and the identity is denoted by zero, g+0 = g.

• We have not specified the topology of G. There are two basic distinctions: dis-
crete/continuous and (roughly speaking) finite volume/infinite volume.

– For discrete groups, it makes sense to count the number of group elements.
This is called the order of the group, |G|. Clearly, this can be finite or infinite.
For finite groups, the product can be specified in a multiplication table.

Note that the order of a group should not be confused with the order of a
group element, ord g, which is the smallest positive integer p such that gp = e.

– Continuous groups are those that have a notion of distance, i.e. it makes sense
to say two group elements are “arbitrarily close”. In practice, this means that
the elements can be parameterised by a set of real3 parameters, g(x1, . . . , xd),
and g(x + ǫ) is very close to g(x). Then clearly, continuous groups have
infinitely many elements, so the order of such a group is not particularly

3In principle, rational numbers would also be allowed, but that is of no importance in physics.
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interesting. There are two related concepts: dimensions and compactness,
which we will properly define later on but which should be intuitively clear:
The dimension is the number of parameters you need to describe the group,
and compactness refers to whether the range of parameters is compact (for
a reasonably chosen parameterisation). In this lecture, we will only consider
finite-dimensional groups. Furthermore, we will restrict to groups which are
smooth in a way we will later define. Still, these can be compact or non-
compact. Furthermore, they need not be connected or simply connected.

In the definition, we have required only a “left identity” and a “left inverse”. Actually,
one can show that they are also right identity and inverses, and they are unique:

i. To show that gg−1 = e, denote the inverse of g−1 by (g−1)
−1

. The expression

(
g−1

)−1
g−1gg−1

can be grouped in two ways,

((
g−1

)−1
g−1

)
gg−1 = egg−1 = gg−1

=
(
g−1

)−1 (
g−1g

)
g−1 =

(
g−1

)−1
eg−1 =

(
g−1

)−1
g−1 = e .

Hence, gg−1 = e, or in other words, (g−1)
−1

= g.

ii. The left identity is also a right identity:

ge = g
(
g−1g

)
=

(
gg−1

)
g = eg = g .

iii. The identity is unique: Assume e and f are identity elements, i.e. ge = eg = gf =
fg = g. Then

e = ef = f .

iv. The inverse is unique: Assume h is another inverse of g, i.e. hg = e. Then we have

h = he = hgg−1 = eg−1 = g−1 .

v. Furthermore, we have the “rearrangement theorem”: Let g be any group element.
Then

gG := {ggi} = G .

The proof is left to the reader.
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2.2.1 Examples

1. Finite groups:

(a) The n-th roots of unity form an Abelian group of order n under multiplication:
Let θ = exp{2πi/n}. Then G = {θp, p = 1, . . . , n}. The identity is 1 = θn, the
inverse of θp is θ−p ≡ θn−p. In such a group, θ is called generating element.
Note that any element θq, where q and n are relatively prime, is again a
generating element.

(b) The integers under addition modulo n form a group, which is actually iso-
morphic to the previous one. This shows that identical group structures can
be realised in different ways.

A group which is generated by a single element θ which satisfies θn = e is
called the cyclic group of order n, denoted Zn.

(c) In some sense the most general finite group is the symmetric group Sn, con-
sisting of the permutation of n things: Cayley’s theorem states that every
finite group of order N is a subgroup of SN . This group is not Abelian.

2. Infinite discrete groups:

(a) (Z, +): Integer numbers under addition. This is the infinite analogue of the
cyclic group, since it is generated by the single element 1 by repeated addition,
and by including the inverse. For an element of finite order p, the inverse is
automatically included as θp−1, but if p = ∞, it has to be included explicitly.
(The integers do not form a group under multiplication, even after cutting
out zero, due to the lack of inverses.)

(b) The modular group SL(2,Z), the group of integer-valued 2× 2 matrices with
unit determinant, under matrix multiplication. This group is important in
string theory.

3. Continuous compact groups:

(a) The orthogonal group O(n), the group of real n × n matrices O satisfying
OT O = 1. This corresponds to rotations and reflections in n-dimensional
Euclidean space Rn.

(b) The unitary group U(n), the group of complex n × n matrices U satisfying
U †U = 1. This corresponds to (holomorphic) rotations and reflections in Cn.

(c) Orthogonal matrices have determinant ±1, while unitary matrices have de-
terminant eiφ, i.e. of modulus one. In both cases, there is a “special” version
of the groups, SO(n) and SU(n), respectively, with the extra restriction that
the matrices must have determinant equal to one.

The orthogonal groups are actually not connected: The determinant is a
continuous function of the group elements, and since it can only take the
values ±1, O(n) must have (at least) two connected components, one of which
is SO(n), while the matrices with determinant −1 do not form a group.
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4. Continuous non-compact groups:

(a) The real (rational, complex) numbers under addition. If zero is excluded,
they also form a group under multiplication.

(b) The positive real (rational) numbers under multiplication

(c) The general linear group GL(n,K) of n × n matrices with entries from the
field K having nonzero determinant. This again has as a subgroup the special
linear group, which consists of those matrices with determinant one. We will
only consider the cases K = R or K = C.

(d) The Euclidean group E(n) (or ISO(n)), the symmetry group of (affine) n-

dimensional Euclidean space. It consists of all transformations ~x → O~x +~b
with an orthogonal matrix O and a constant shift ~b.

(e) The orthogonal and unitary groups can be defined as those linear transforma-
tions of a (real or complex) n-dimensional vector space preserving a positive
definite scalar product (the usual Euclidean or Hermitean scalar product). If
this scalar product is changed such that it is no longer positive definite, the
resulting symmetry group will be non-compact, an example being the Lorentz
group.

(f) An example important for quantum mechanics is the automorphism group
Aut(V ) of any vector space V . For finite-dimensional vector spaces, this
coincides with GL(n,K).

2.3 Subgroups and Cosets

Definition 2. A subgroup H of G is a subset of elements which forms a group under
the group product of G.

• Every subgroup must contain the identity.

• A subset H ⊂ G is a subgroup if and only if for all h1, h2 ∈ H, h1h
−1
2 ∈ H.

• {e} and G itself are trivially subgroups.

• If G is Abelian, so is H. The converse is not true.

• Every element g ∈ G generates an Abelian subgroup 〈g〉. For elements of finite
order, we simply have 〈g〉 = {gp}, p = 1, . . . , ord g. For ord g = ∞, on the other
hand, we would miss the inverses and the identity, so we have to explicitly include
e and g−1. Writing e = g0 and g−p = (g−1)

p
, we again have 〈g〉 = {gp}, but this

time p ∈ Z. In both cases, the order of 〈g〉 is the order of g (i.e. |〈g〉| = ord g).
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Examples:

• The cyclic group Z6 has subgroups of order two and three, generated by θ3 and
θ2, respectively.

• O(3) has a discrete subgroup given by {1,−1}. Furthermore it has a continuous
family of subgroups given by those rotations that leave a given vector invariant.

• U(2) has non-equivalent one-dimensional subgroups,

U(1)A =
{
eiφ
1
}

and U(1)B =

{(
eiψ 0
0 e−iψ

)}

(Non-equivalent means that they are not related by a similarity transformation.)

• For every group G, the center is the set of those elements which commute with all
elements of G,

Z(G) = {h ∈ G|hg = gh for all g ∈ G} .

Clearly, Z(G) is an Abelian subgroup.

Definition 3. Let H = {hi} be a subgroup of G and g ∈ G any group element. The set

gH = {ghi}

is called a left coset of H. Similarly, Hg is a right coset.

It is easy to show that:

• A coset gH is a subgroup if and only if g ∈ H, in which case gH = H.

• Two cosets g1H and g2H are either equal or disjoint.

• All cosets have the same number of elements.

2.4 Conjugates, Normal Subgroups

Definition 4. Two group elements g1 and g2 are called conjugate, written as g1 ∼ g2,
if there exists an element g such that

g1 = gg2g
−1 .

Conjugacy is an equivalence relation, i.e. it is

i. reflexive: i.e. g ∼ g,

ii. symmetric: from g1 ∼ g2 it follows that g2 ∼ g1, and
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iii. transitive: if g1 ∼ g2 and g2 ∼ g3, then g1 ∼ g3.

Since conjugacy is an equivalence relation, we can form equivalence classes, called
conjugacy classes : Given any group element g, its conjugacy class is the set of all
conjugate elements:

[g] = {h ∈ G|g ∼ h}

g is called a representative of the class.

• If g′ is another element of [g], it can also be used as the representative, i.e. [g] = [g′]
if and only if g ∼ g′.

• For Abelian groups, every element is its own conjugacy class.

• The identity element is always its own class.

• If g is of order p, every element of [g] is also of order p.

Definition 5. A subgroup H is called a normal subgroup (or invariant subgroup) if it is
self-conjugate, i.e. if

gHg−1 = H for all g ∈ G .

This is denoted as H ⊳ G.

• Equivalently, a normal subgroup is one for which left and right cosets coincide.

• A normal subgroup must be a union of conjugacy classes.

• For Abelian groups, every subgroup is normal.

• The center is always a normal subgroup.

• A subgroup which contains half of all elements, i.e. for which |G| = 2 |H|, is a
normal subgroup.

• If N ⊳ G, H is a subgroup of G and N is a subgroup of H, then N ⊳ H. The
converse is not true, i.e. if H ⊳G and K ⊳H, it is not necessarily true that K ⊳G.

A group which has no nontrivial normal subgroups (i.e. other than {e} and G itself)
is called simple.
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2.5 Quotient Groups

Normal subgroups allow for the construction of quotient groups. Let H be a normal
subgroup of G. Loosely speaking, the quotient group G/H is obtained by dividing out
the subgroup, or by considering elements of G up to the action of H. (For some stupid
reason, quotient groups are also called factor groups.)

Definition 6. Let H ⊳ G. The quotient group is the set of left cosets of H,

G/H = {gH|g ∈ G} , .

The group operation is defined by

g1H · g2H = g1g2H .

The group axioms seem to be satisfied rather obviously. However, there might be a
problem: There are group elements g 6= g′ for which gH = g′H, and we have to make sure
that replacing g with g′ leads to the same result. This leads to the condition that H is a
normal subgroup: Consider for simplicity the case where g1 = e. Then g1H = H = hH
for all h ∈ H. Now in G/H, H itself is the identity element, so H · gH = gH. Hence we
have

gH = H · gH = hH · gH = hgH = gg−1hgH . (2.2)

Hence we require g−1hgH = H, or g−1hg ∈ H, i.e. H needs to be normal. It is slightly
more tedious, but still straightforward, to show that the product is well-defined for
arbitrary elements. The key observation is that if gH = g′H, then g′ = gh with h ∈ H.

The question of well-definedness will come up now and then when one discusses
quotient groups. This is a manifestation of a more general point: Is is clear that gH =
g′H defines an equivalence relation g ∼ g′ (though a different one as the one we used
to define conjugacy classes!), and one can think of the quotient group as the set of
equivalence classes under this relation, and the product is [g1] [g2] = [g1g2]. However,
this defines an operation on classes via explicit representatives, and one has to take care
that the result does not depend on the chosen representative.

2.6 Group Homomorphisms

Definition 7. A group homomorphism is a map f : G → H between two groups which
preserves the group structure, i.e. which satisfies

f(g1g2) = f(g1) f(g2) .

(Note that the product on the left side is the group product of G, while on the right side
it is that of H.)

A group isomorphism is an invertible group homomorphism. If there exists a group
isomorphism between G and H, the groups are called isomorphic, G ∼= H.

Finally, a group isomorphism from a group to itself is a group automorphism.
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We will drop the “group” and denote “group homomorphism” by “homomorphism”
from now on (and similar for isomorphisms).

From the defining property of a homomorphism it directly follows that

f(eG) = eH , f
(
g−1

)
= (f(g))−1 .

As usual, we define kernel and image:

• The image of f , denoted by f(G) (sometimes also denoted by Imf , but we will
mostly not use that convention because of the confusability with the imaginary
part), is the part of H reached by f :

f(G) = {h ∈ H|∃g ∈ G with f(g) = h}

• The kernel of f , denoted by ker f (or f−1(eH)), is the subset of G mapped to the
identity in H,

ker f = {g ∈ G|f(g) = eH} .

It is clear that f is injective if and only if ker f = {eG}: Assume f(g) = f(h),
so f(g−1h) = eH , i.e. g−1h ∈ ker f . If ker f = {eG} , then g = h. If, on the
other hand, the kernel is nontrivial, there exists a group element g′ 6= eG such that
f(g′) = eH , and then f(g) = f(g′g) while g′g 6= g.

From now on we also drop the G and H subscripts.

Now for three important theorems, called isomorphism theorems (sometimes the first
isomorphism theorem is called homomorphism theorem):

1. Let f : G → H be a group homomorphism. Then we have the following properties:

(a) The kernel ker f is a normal subgroup of G.

(b) The image f(G) is a subgroup of H.

(c) The quotient G/ ker f is isomorphic to f(G) with the isomorphism given by

f̃ :
G/ ker f −−−−−→ f(G)

g(ker f) 7−−−−−→ f(g)
. (2.3)

2. Let H be a subgroup and N be a normal subgroup of G. Then we have

(a) The product HN is a subgroup of G. (The product is defined as

HN = {hn|h ∈ H, n ∈ N} ) (2.4)

(b) The intersection H ∩ N is a normal subgroup of H.
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(c) There is an isomorphism of quotient groups,

HN/N ∼= H/ (H ∩ N) . (2.5)

3. Let H and N be normal subgroups of G, and let N be a subgroup of H. Then N
is also normal in H, and

(G/N) / (H/N) ∼= G/H . (2.6)

Note that the second and third isomorphism theorems look intriguingly like rules for
“fractions” G/N : The second theorem tells us that we can “multiply” numerator and
denominator by H∩,

HN

N
=

H∩
H∩ × HN

N
=

H ∩ (HN)

H ∩ N
=

H

H ∩ N
. (2.7)

The third theorem seems to tell us that we can “cancel common factors”,

G/N

H/N
=

G

N
× N

H
=

G

H
. (2.8)

In these equations, the “=” and “×” signs should not be taken literally – they serve as
an intuitive way to memorise the theorems.

We will now prove the first isomorphism theorem. (The proofs of the other two are
left to the reader – you can use the first theorem by constructing clever homomorphisms!)

(a) To show that ker f is normal, we first show that it is a subgroup. Assume g, h ∈ ker f ,
i.e. f(g) = f(h) = e. Then clearly

f
(
gh−1

)
= f(g)f

(
h−1

)
= f(g) (f(h))−1 = ee−1 = e , (2.9)

so gh−1 ∈ ker f , thus ker f is a subgroup. To show that ker f is normal, let h now
be any group element, not necessarily in the kernel, and consider

f
(
hgh−1

)
= f(h)f(g)f

(
h−1

)
= f(h)ef

(
h−1

)
= f(h) (f(h))−1 = e , (2.10)

so h (ker f) h−1 = ker f .

(b) The image is a subgroup because the group structure is transferred by the homo-
morphism. Explicitly, let f(g) and f(h) be two elements of f(G). Then we have

f(g) (f(h))−1 = f(g)f
(
h−1

)
= f

(
gh−1

)
∈ f(G) . (2.11)

(c) We need to show that f̃ is a homomorphism and that the center is trivial.

But first, you might wonder whether f̃ actually is well-defined: There can be a
g′ 6= g for which still g ker f = g′ ker f , so one has to make sure that f̃(g ker f) =
f̃(g′ ker f), i.e. f(g) = f(g′). This is indeed satisfied: From g ker f = g′ ker f we can
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conclude that g−1g′ ker f = ker f , hence g−1g′ ∈ ker f . Thus, f(g′) = f(gg−1g′) =
f(g)f(g−1g′) = f(g) since f(g−1g′) = e.

To show that f̃ is a homomorphism, consider

f̃(g ker f) f̃(h ker f) = f(g)f(h) = f(gh) = f̃(gh ker f) . (2.12)

To show isomorphy, let g ker f be in the kernel of f̃ , i.e. f̃(g ker f) = e. However,
the definition of f̃ then implies that f(g) = e, hence g ∈ ker f , so g ker f = ker f ,
which is the identity element of G/ ker f . Hence the kernel of f̃ is trivial. Since it is
surjective by construction, f̃ is indeed a group isomorphism.

Since ker f measures the failure to be injective, this theorem states that we can “divide
out” the kernel to obtain an isomorphism from any map. Practically, the theorem gives
an easy way to check whether a given subgroup is normal: Find a homomorphism of
which it is the kernel. This criterion is exhaustive: Since for any normal subgroup N ⊳G
the map

π :
G −−−−−→ G/N

g 7−−−−−→ gN
(2.13)

is a group homomorphism with kerπ = N , we have the following corollary: A subgroup
H ⊂ G is normal if and only if there exists a group homomorphism f : G → G′ with
ker f = H.

Examples:

• For any matrix group over a field K, the determinant is a group homomorphism
to K∗ = K \ {0}. The kernel of this map consists of the matrices with unit
determinant, which thus are normal subgroups. The quotients are isomorphic to
the respective images. For example,

– for GL(n,K) the map is surjective, and we have

SL(n,K) ⊳ GL(n,K) and GL(n,K) /SL(n,K) ∼= K∗ .

– For elements of U(n), the determinant is a complex number of modulus one,
i.e. the image of the determinant map is the unit circle S1, which itself is
isomorphic to U(1)

SU(n) ⊳ U(n) and U(n,K) /SU(n,K) ∼= U(1) .

This U(1) can be identified with U(1)A above. Since the elements of U(1)A

commute with every other element, U(1)A is itself a normal subgroup.
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• Fix a group element g. Then conjugation by g

fg :
G −−−−−→ G

h 7−−−−−→ ghg−1 (2.14)

is a group automorphism, since

fg(h1h2) = gh1h2g
−1 = gh1g

−1gh2g
−1 = fg(h1)fg(h2) . (2.15)

Any automorphism of G which can be written in this way is called inner automor-
phism, otherwise, it is obviously an outer automorphism. The set of inner auto-
morphisms is again a group, and g 7→ fg is a group homomorphism, i.e. fgfh = fgh.
The kernel of this homomorphism is the set of the elements which commute with
all group elements — the center. This gives an independent proof that the center
is normal.

2.7 Product Groups

We will now finally discuss ways to combine groups into bigger ones.
Given two groups G1,2, we can define a “trivially combined” group, the direct product

(or direct sum, which is the same for finitely many factors):

Definition 8. The direct product of G1 and G2 is given by the set

G1 × G2 = {(g1, g2) |g1 ∈ G1, g2 ∈ G2} . (2.16)

The product is defined componentwise,

(g1, g2) (g′
1, g

′
2) = (g1g

′
1, g2g

′
2) . (2.17)

This construction is straightforwardly extended to finitely many group factors G1×· · ·×
Gn.

• G1×G2 has normal subgroups (g1, 1) and (1, g2) which are isomorphic to (and which
we identify with) G1 and G2, respectively, and natural group homomorphisms
(“projections”) π1,2 : G1 × G2 → G1,2.

• These subgroups commute with each other, so every element of G1 × G2 can be
uniquely given as (g1, g2) = (g1, 1) (1, g2).

If two groups are given, the direct product is rather trivial. On the other hand, it is
interesting to see whether a given group can be written as a direct product of some of
its subgroups. The result is the following: G is the direct product of its subgroups N1

and N2 if the following conditions hold:

1. N1 and N2 are normal subgroups,
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2. they are basically disjoint, i.e. N1 ∩ N2 = {e}, and

3. they generate the group, i.e. G = N1N2.

considering the “commutator” ghg−1h−1, which by normalcy is ghg−1h−1 = h′h−1 =
gg′−1, hence it is an element both of N1 and of N2. By the second condition, it is thus
e. By the third condition, any group element can be uniquely written as gh. Show that
(N1 × N2) /N1

∼= N2!)
As an example, we have already seen that U(n) = U(1)×SU(n): Every U(n) matrix

can be written as a product of a matrix of the form eiφ1 and an SU(n) matrix, and
these commute.

Things are more interesting if the subgroups are not both normal. As an example,
consider E(2), the group of affine transformations in the plane. Each group element is
specified by a special orthogonal matrix O and a shift ~a.

This structure is called semidirect product. Formally, we have the following defini-
tion:

Definition 9. Given two groups N and H and a homomorphism θ : H → Aut N , the
semidirect product is defined as the group

G = N ⋊ H {(n, h) |n ∈ N, h ∈ H}
with the product

(n1, h1) (n2, h2) = (n1θ(h1)n2, h1h2) .

In other words, in the product H acts on N by θ. From this it follows that H is a
subgroup and N is a normal subgroup of N ⋊ H.

To check whether a group can be written as a semidirect product, one can copy
from the direct product case above, dropping the normality condition for one of the
subgroups: G is the semidirect product of its subgroups N and H if

1. N is a normal subgroup,

2. they are basically disjoint, i.e. N ∩ H = {e}, and

3. they generate the group, i.e. G = NH.

2.8 Summary

• The reason group theory is useful in physics is that group theory formalises the
idea of symmetry.

• A group is a set of elements that can be multiplied associatively, there is an identity
and every element can be inverted.

• A normal subgroup is a subgroup that is invariant under conjugation. It can be
“divided out” to form the quotient group G/N .

• Group homomorphisms are maps that preserve the group structure.
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Chapter 3

Representations

So far, we have discussed groups as sets of elements that can be multiplied with each
other. In physical applications, we need these elements to act on various physical quanti-
ties, like e.g. SO(3) rotations can be applied to vectors in space, or to quantum mechan-
ical states |nlm〉. When a group acts on a vector space, this is called a representation,
and this is what (most of) the rest of the course will be about. But first we will briefly
discuss general group actions.

3.1 General Group Actions

In this section, we will define an action of a group on a general set X which may or may
not be finite, discrete, compact or whatnot. The bijections of this set naturally form a
group, which is sometimes called the symmetric group of X, Sym(X). Note that if X is
finite and contains n elements, this reproduces our previous definition of the symmetric
group Sn.

Definition 10. A group action is a homomorphism from G into Sym(X).

One usually writes the bijection associated to g as a left multiplication with g instead
of fg(·) or so, so if g ∈ G and x ∈ X, the group action is written as

x 7−−−−−→ g · x . (3.1)

This automatically satisfies (gh) · x = g · (h · x), and e · x = x. Alternatively, one can
write the action as a right action; this is equivalent. (In this construction, X sometimes
is called a G-space.)

Examples:

• Some groups are defined by their action, e.g.

– the symmetric group Sn acts on the n-element set,

– and the Euclidean group acts of the affine space Rn.
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• The orthogonal group O(n) acts on the n − 1-dimensional unit sphere Sn−1.

• Any group acts on itself in two ways:

– By left multiplication, h 7→ gh (or equivalently right multiplication),

– and by conjugation, h 7→ ghg−1.

A group action might have various properties:

• The action is faithful if the kernel of the homomorphism is just {e}, i.e. if different
group elements get mapped to different bijections of X.

• It is transitive if for all x, y ∈ X, there is a g ∈ G such that g · x = y.

• It is free if no nontrivial elements have fixed points, i.e. if g · x = x, then g = e.

• If it is both transitive and free, it is regular.

The group action gives rise to some natural definitions:

• If the action is not faithful, the elements which leave all of X invariant form a
subgroup

N = {g ∈ G|g · x = x ∀x} . (3.2)

• Fix a point x ∈ X. Then its orbit is the set of all images, i.e.

Gx = {g · x|g ∈ G} . (3.3)

Conversely, the stabiliser (or little group) is the set of all group elements that leave
x invariant,

Gx = {g ∈ G|g · x = x} . (3.4)

Note that Gx ⊂ X while Gx ⊂ G.

Finally, we give the orbit–stabiliser theorem: For a given point x, the orbit Gx is
in one-to-one correspondence with the set of left cosets of the stabiliser. A bijection is
given by

g · x 7−−−−−→ gGx . (3.5)

From this one can deduce that

|Gx| =
|G|
|Gx|

. (3.6)

So much for general group actions – from now on we will restrict to representations,
i.e. the case where X is a vector space and G acts by linear transformations.
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3.2 Representations

Definition 11. A representation of a group G is a continuous homomorphism D from
G to the group of automorphisms of a vector space V ,

D : G −−−−−→ Aut V . (3.7)

V is called the representation space, and the dimension of the representation is the
dimension of V .

• We will always take homomorphisms to be continuous without explicitly stating.

• Some related descriptions: G “acts on V (via D)”, V carries a representation of
G, the elements of V “transform under the representation D”, or in some abuse of
language, “are in the representation D”.

• In this lecture, we will usually assume that V is finite-dimensional unless otherwise
stated.

• There is always the representation D(g) = 1 for all g. If dim V = 1, this is called
the trivial representation.

• The matrix groups, i.e. GL(n,K) and subgroups, naturally have the representation
“by themselves”, i.e. by n × n matrices acting on Kn and satisfying the defining
constraints (e.g. nonzero determinant). This is loosely called the fundamental or
defining representation.

• Two representations D and D′ are called equivalent if they are related by a simi-
larity transformation, i.e. if there is an operator S such that

SD(g) S−1 = D′(g) (3.8)

for all g. Note that S does not depend on g! Two equivalent representation can be
thought of as the same representation in different bases. We will normally regard
equivalent representations as being equal.

• A representation is called faithful if it is injective, i.e. ker D = {e}, or in other
words, if D(g1) 6= D(g2) whenever g1 6= g2.

• If V is equipped with a (positive definite) scalar product, D is unitary if it preserves
that scalar product, i.e if

〈u, v〉 = 〈D(g)u,D(g)v〉 (3.9)

for all g ∈ G. (Here we assume that V is a complex vector space, as that is the
most relevant case. Otherwise one could define orthogonal representations etc.)
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3.3 Unitarity

In certain cases, we can restrict to unitary representations, due to the fact that for finite
groups and for compact Lie groups, all representations are equivalent to a unitary one.
We will show this for the case of finite groups by explicitly constructing the similarity
transformation. Denote the representation by D. Unitarity means that D(g−1) = D(g)†,
so the failure to be unitary is reflected in the product D(g)†D(g) not being the identity.
For the whole representations, we sum over all elements and consider the operator

S =
∑

g

D(g)†D(g) , (3.10)

which measures the non-unitarity of D which we want to transform away. Since S is
Hermitean and positive definite, we can define a Hermitean square root matrix X with
X2 = S.

This is done by first diagonalising S, taking the square root of the diagonal ma-
trix and undoing the diagonalisation procedure. S can be diagonalised by a unitary
transformation, because it S is Hermitean, so we have S = USdiagU

†. The entries of
Sdiag = diag(λ2

1, . . . , λ
2
d) are positive real numbers (because the D(g) must be invertible,

and so cannot have zero eigenvalues), so we can take the square root of each one and ob-
tain the matrix root

√
Sdiag = diag(λ1, . . . , λd), which in turn gives us X = U

√
SdiagU

†.
This X provides the sought-after similarity transformation! To see that, consider the
representation

D′(g) = XD(g)X−1 , (3.11)

which turns out to be unitary:

D′(g)†D′(g) = X−1D(g)†X2D(g)X−1 = X−1X2X−1 = 1 , (3.12)

where we have used X† = X and

D(g)†X2D(g) = D(g)†

(
∑

h

D(h)†D(h)

)
D(g)

=
∑

h

D(hg)†D(hg) =
∑

h

D(h)†D(h) = X2 .

(3.13)

Hence we have found the equivalent unitary representation. Note that if D was already
unitary, then S and consequently X are proportional to the unit matrix, so D′ = D.

As it stands, the proof only works for finite groups because otherwise the sum over
g does not converge, so S does not exist in general. For compact Lie groups, however,
there exists a (unique) translationally invariant measure, so we can replace

∑
g →

∫
dg,

and the integral is convergent because of compactness. Then the proof directly carries
over.

For infinite and non-compact groups, on the other hand, the representations are not
unitary in general. For infinite groups, this can be seen from a simple example: Con-
sider Z∗ as multiplicative group and the obvious representation on C via multiplication
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z 7→ nz. Clearly, 〈nz, nz〉 = n2 |z|2 6= |z|2. Hence, this representation is not unitary,
and it cannot be made unitary by a similarity transformation. For non-compact Lie
groups, we can use a topological argument: The group of unitary operators on a finite-
dimensional vector space is isomorphic to U(n) (for complex vector spaces, O(n) other-
wise), and is hence compact. But there cannot be a bijective continuous map between
a compact and a non-compact space, so faithful finite-dimensional representations of
non-compact groups will be non-unitary. As an example, the defining representation
GL(n,C) (i.e. where the elements act on Cn in the usual way) contains, among oth-
ers, matrices M = ez1, for which 〈Mu,Mv〉 = |ez|2 〈u, v〉, i.e. which are manifestly
not unitary. Note that the “faithful” condition is necessary, as can be seen from the
representation of R on C as D(x) = eix.

The compactness argument does no longer apply if the scalar product is non-definite
(but still non-degenerate), as is evident from the Lorentz group: The defining represen-
tation is one which is finite-dimensional and unitary with respect to the Minkowskian
scalar product. The reason is that for non-definite spaces, the unitary operators do not
form a compact set. We will discuss the Lorentz group in Chapter 7.

To summarise, for finite groups and for compact Lie groups, all representations are
equivalent to a unitary one (and we will usually take them to be unitary from now on).
For infinite groups and non-compact Lie groups, on the other hand, finite-dimensional
faithful representations are never unitary. Finally, some non-compact groups may have
representations which are unitary with respect to a non-definite scalar product, such as
the Lorentz group.

3.4 Reducibility

An important question is whether we can “break up” a representation into smaller parts.
This will be the case if there is a subspace of V which gets mapped to itself, because then
the representation can be restricted to that subspace. Formally, we say that a subspace
V1 ⊂ V is an invariant subspace if D(g)V1 ⊂ V1 for all g ∈ G.

Definition 12. A representation D is called reducible if V contains an invariant sub-
space. Otherwise D is called irreducible.

A representation is called fully reducible if V can be written as the direct sum of
irreducible invariant subspaces, i.e. V = V1 ⊕ · · · ⊕ Vp, all the Vi are invariant and the
restriction of D to each Vi is irreducible.

Recall from linear algebra that V = V1 ⊕ V2 means that every vector v can be
uniquely written as v = v1 + v2, with vi ∈ Vi. Then dim V = dim V1 + dim V2. (This
is an unfortunate notation in the sense that the direct sum is basically the Cartesian
product, ⊕ ≈ ×, while the tensor product ⊗ is something entirely different.)

Assume D is reducible, i.e. there is an invariant subspace V1. From invertibility it
follows that D(g)V1 = V1. If one chooses a basis of V such that the first d1 basis vectors
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span V1, the matrices of D take the block-upper-triangular form

D(g) =

(
D1(g) D12(g)

0 D2(g)

)
(3.14)

for all g. Here D1(g) and D2(g) denote d1×d1- and d2×d2-dimensional matrices (where
d1 + d2 = d = dim V ), while the off-diagonal piece D12(g) is d2 × d1-dimensional. If D
is fully reducible, on the other hand, D12 = 0, i.e. it can be brought to block-diagonal
form,

D(g) =




D1(g)
. . .

Dp(g)


 = D1(g) ⊕ · · · ⊕ Dp(g) . (3.15)

Clearly the Di are representations of G of dimension di = dim Vi (where
∑

di = d) and
are called the irreducible components of D. The d-dimensional representation D has
been reduced to p representations Di, each acting on an di-dimensional space Vi.

Reducibility does not imply complete reducibility, as can be seen in the following ex-
ample: Consider the representation of the additive group of integers by two-dimensional
matrices

Tp =

(
1 p
0 1

)
. (3.16)

Clearly, TpTq = Tp+q, although it might seem odd that addition is represented by matrix
multiplication. This representation is reducible: The vector e(1) =

(
1
0

)
is an eigenvector of

all Tp. On the other hand, the matrices are of Jordan form, so they are not diagonalisable.
Equivalently, e(2) is not an eigenvector.

However, this cannot happen for most of our examples: Unitary representations are
always completely reducible. To prove this, first note that D is fully reducible if for every
invariant subspace V1, also its complement V ⊥

1 is invariant. This property, on the other
hand, follows from unitarity: Let v ∈ V1, w ∈ V ⊥

1 , i.e. 〈w, v〉 = 0. Then we have

0 = 〈D(g)v, w〉 =
〈
v,D(g)†w

〉
=

〈
v,D

(
g−1

)
w

〉
(3.17)

for all g. But if g runs over all group elements, so does g−1, so 〈v,D(g)w〉, hence
D(g)w ∈ V ⊥

1 . And since we have seen that all representations of finite and compact
groups are unitary (up to equivalence), they are also completely reducible.

This in particular implies that the irreducible representations are the building blocks
for all representations, so the main task in much of the later course will be to

• classify all possible irreducible representations (“irreps”) of a given group, and to

• find algorithms to reduce a representation to its irreducible components.
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As a useful corollary, note that reducibility can be expressed in the following form:
Let P denote a projection operator onto some subspace V1. Then V1 is invariant (and
hence D is reducible) if

PD(g)P = D(g)P for all g ∈ G. (3.18)

Furthermore, D is completely reducible if for every P that satisfies this, 1−P also does,
which in turn is equivalent to the statement that D and P commute.

3.5 Direct Sums and Tensor Products

In the last section we have seen how to reduce representations – there is also an opposite
direction, sticking representations together to make bigger ones.

The first one is rather boring: Given two representations D1,2 acting on spaces V1,2

we can form the direct sum representation D1⊕D2 acting on V1⊕V2. For completeness:
V1 ⊕ V2 is the space of ordered pairs (v1, v2) on which the combined representation acts
as

(v1, v2) 7−−−−−→ (D1(g)v1, D2(g)v2) . (3.19)

This is obviously reducible, and already in block-diagonal form.
The other one is more interesting: Given V1 and V2 as above, we can form the tensor

product (or direct product) V = V1⊗V2. This space is constructed as follows: Take bases
{vi} and {wa} of V1 and V2, where i = 1, . . . , d1 = dim V1 and a = 1, . . . , d2 = dim V2.
A basis of V is then given by the set {vi ⊗ wa}, i.e.

V =
{
aiavi ⊗ wa

}
(3.20)

with real or complex coefficients aia depending on whether V1 and V2 are real or complex
spaces. Note that the ⊗ symbol in the basis elements is just a formal way of writing
these as ordered pairs. Here and always in life we use the summation convention: An
index which appears once upstairs and once downstairs is implicitly summed over, e.g.
aiavi ⊗ wa =

∑d1

i=1

∑d2

a=1 aiavi ⊗ wa. An element of V1 ⊗ V2 is thus specified by its
components aia, which can be pictured as a “matrix”

aia =




a11 . . . a1d2

...
. . .

...
ad11 . . . ad1d2


 . (3.21)

Clearly the dimension of V1⊗V2 is the product of the individual dimensions, dimV1⊗V2 =
dim V1 · dim V2.

Note that although the basis elements of the tensor product space are products of
the basis elements of the factors, a general element in V1 ⊗ V2 cannot be written as a
single tensor product of an element of V1 and an element of V2. In quantum mechanics,
this is called entanglement: In the simplest form, consider two spins which can each be
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up or down, the states being labeled by |↑〉1,2 and |↓〉1,2. Then an entangled state would
for example be

|↑〉1 ⊗ |↑〉2 − |↓〉1 ⊗ |↓〉2 6= |something〉1 ⊗ |something〉2 . (3.22)

Now what about operators on the product space? Given two operators acting on V1

and V2, we can define their tensor product via their matrix elements. Let the matrix
elements be (D1)

j
i and (D2)

b
a, the matrix elements of the product D1 ⊗ D2 are

(D1 ⊗ D2)
jb
ia = (D1)

j
i (D2)

b
a . (3.23)

The product operator acts on V as

D1 ⊗ D2 : aiavi ⊗ wa 7−−−−−→
(
(D1 ⊗ D2)

ia
jb ajb

)
vi ⊗ wa . (3.24)

For using operators, the double index notation might be somewhat unfamiliar. You can
think of grouping them into one index, (ia) = A, which runs from one to dim V1 ·dim V2.
Then the basis elements are eA = vi ⊗wj, and vectors transform according to the usual

rule aA 7→ (D1 ⊗ D2)
A
B aB.

In general, a tensor product is not irreducible, even if the factors are. As an example,
consider the rotation group SO(3). From your QM lecture you know that the irreducible
representations of SO(3) are labeled by the spin l ∈ N, and that the spin-l representation
is 2l+1-dimensional (although it might not have been stated in these terms). For a spin-
one particle, for example, the possible spin orientations are labelled by m = −1, 0, 1,
so the state is described by a three-component vector |ψ〉 = (|ψ−〉 , |ψ0〉 , |ψ+〉). If you
want to describe the spin state of the combined system of two spin-one particles (assume
they are different), there clearly are nine possible combinations – this corresponds to
the tensor product of two spin-one representations. However, the combined system can
have total angular momentum l = 0, 1 or 2, depending on the relative orientation. In
other words, addition of angular momentum corresponds to the decomposition

Dl=1 ⊗ Dl=1 = Dl=0 ⊕ Dl=1 ⊕ Dl=2 . (3.25)

Note that the dimensions work out: 3 × 3 = 1 + 3 + 5.

3.6 Schur’s Lemma

Finally, there is one important property of irreducible components known as Schur’s
Lemma. We will first state this in a more formal intertwiner parlance and then in the
familiar “commuting matrices” version.

Definition 13. Given two representations D1 and D2 acting on V1 and V2, an inter-
twiner between D1 and D2 is a linear operator

F : V1 −−−−−→ V2 (3.26)
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which “commutes with G” in the sense that

FD1(g) = D2(g)F (3.27)

for all g ∈ G.

The existence of an intertwiner has a number of consequences. First, D1 and D2 are
equivalent exactly if there exists an invertible intertwiner. Second, the kernel and the
image of F are invariant subspaces: Assume v ∈ ker F , i.e. Fv = 0. Then

FD1v = D2Fv = D2 0 = 0 , (3.28)

so D1v ∈ ker F . On the other hand, let w2 = Fw1 be an arbitrary element of the image
of F . Then from the definition we have

D2w2 = D2Fw1 = FD1w1 , (3.29)

which is again in the image of F . Now if D1 is irreducible, the only invariant subspaces,
hence the only possible kernels, are {0} and V1 itself, so F is either injective or zero.
Similarly, if D2 is irreducible, F is either surjective or zero. Taking these statements
together, we arrive at Schur’s Lemma: An intertwiner between two irreducible represen-
tations is either an isomorphism, in which case the representations are equivalent, or
zero.

An important special case is the one where D1 = D2. In that case, we see that F
is essentially unique. More precisely, we have the following theorem, also often called
Schur’s Lemma: If D is an irreducible finite-dimensional representation on a complex
vector space and there is an endomorphism F of V which satisfies FD(g) = D(g)F
for all g, then F is a multiple of the identity, F = λ1. Less formally, a matrix which
commutes with all matrices of an irreducible representation is proportional to the unit
matrix. This is again a way to test whether a representation is irreducible: If there is
a matrix which commutes with the complete representation but is not the unit matrix,
the representation is reducible.

To prove this, note that F has at least one eigenvector v with eigenvalue λ. (This
is where we need V to be a complex vector space: A real matrix might have complex
eigenvalues, and hence no real eigenvectors.) Clearly, F − λ1 is also an intertwiner, and
it is not an isomorphism since it annihilates v. Hence, by Schur’s Lemma, it vanishes,
thus F = λ1.

If D1 and D2 are not equal, but equivalent, we also find that the intertwiner is unique
up to a constant: If there are two different intertwiners F1 and F2, the composition
F−1

2 F1 is a self-intertwiner of D1 and hence proportional to the identity, or in other
words, F2 = λF1.

This has a particular implication for Abelian groups: Since every element of a rep-
resentation commutes with every other element (including itself, of course), every ele-
ment is proportional to the unit matrix, and hence every (complex) representation is
reducible unless it is one-dimensional, hence all complex irreducible representations of
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Abelian groups are one-dimensional. Irreducible representations on real vector spaces
can be two-dimensional.

As a neat aside, for real representations, the space of intertwiners can have real
dimensions zero (for nonequivalent representations), one, two or four. This is a conse-
quence of the following fact: The intertwiners form a division algebra over the field of
the corresponding vector space (i.e. they can be added and multiplied, the identity map
1 is an intertwiner, and every nonzero map is invertible). The only division algebras
over the real numbers are the real numbers, the complex numbers, the quaternions and
the octonions. Since we are always discussing finite-dimensional representations, the in-
tertwiners are basically matrices, i.e. associative, and hence the octonions do not arise.
Hence, we are left with the reals, complexes and quaternions.

3.7 Eigenstates in Quantum Mechanics

From the preceding discussion, we can derive a property which is the cornerstone of the
use of group theory in quantum mechanics: The eigenstates of the Hamiltonian for a
given energy come in (usually irreducible) representations of the symmetry group.

To flesh this out a bit, consider the symmetry group G of the Hamiltonian, i.e.
those operators which commute with H, and assume for the time being that is it finite
or compact. We can divide up the Hilbert space into the eigenspaces of H, i.e. the
subspaces corresponding to the different eigenvalues (this discussion applies to any self-
adjoint operator which commutes with all elements of a representation of the group).
Each such subspace carries a representation of G, since acting with any D(g) does not
change the eigenvalue because [H,D(g)] = 0. Furthermore, since the Hilbert space
is a complex vector space, the representation can be fully reduced into its irreducible
components in each eigenspace. In other words, the eigenstates of the Hamiltonian
transform in representations of G, and states in different irreducible representations are
orthogonal.

Hence, group theory tells you something about the degeneracy of eigenstates: The
possible degeneracies of the Hamiltonian are restricted by the representations of the
symmetry group – degeneracy comes from symmetry. Usually, one energy eigenspace
carries one irreducible representation. If, on the other hand, there is more degeneracy,
i.e. for a given energy there are several irreducible representations, this is called an
accidental degeneracy. This can be either truly accidental, or it is an indication that you
have not identified the full symmetry. As an example, consider the hydrogen atom: The
eigenspaces of the Hamiltonian are labelled by the energy, or equivalently the principal
quantum number n, since E ∼ − 1

n2 . (We restrict to bound states here.) The eigenspace
with n = 2 then contains two representations of the SO(3) of spatial rotations,

Hn=2 = Hl=0
n=2 ⊕Hl=1

n=2 . (3.30)

Hence the degeneracy is partially from symmetry and partially accidental: The fact
that the |n, l,m〉 = |2, 1, 1〉, |2, 1, 0〉 and |2, 1,−1〉 states have the same energy is a
consequence of the SO(3) of spatial rotations. On the other hand, there is no obvious
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reason why the |2, 0, 0〉 state should be degenerate with the other ones as well, so this
would be an accidental degeneracy. However, this accident happens in a rather regular
manner, so one might suspect that there is something behind it, and indeed it is: The
symmetry group is actually larger because there is an additional SO(3) generated by
the Lenz–Runge vector (which, however, acts in a more subtle way). Under this larger
symmetry group, the representations for any n are in fact irreducible.

Note that what we call hydrogen atom here is actually the first-order approximation –
there are a number of further effects which contribute to the energy. Some of those, as
e.g. the relativistic correction to the kinetic energy, preserve the SO(3) symmetry and
hence can only break the accidental degeneracy. Others, such as the spin of the nucleus,
do not preserve the rotational symmetry and in the end break all the degeneracy.

3.8 Tensor Operators, Wigner–Eckart Theorem

To make this more explicit, we first consider a general state |ψ〉 in the Hilbert space.
Under a symmetry transformation, the states transform as

|ψ〉 7−−−−−→ D(g) |ψ〉 , 〈ψ| 7−−−−−→ 〈ψ|D(g)† (3.31)

with some reducible representation D of the symmetry group. Operators on the Hilbert
space transform as

O 7−−−−−→ D(g)OD(g)† , (3.32)

so that matrix elements 〈ψ|O|χ〉 are invariant. Here we make use of Wigner’s theorem
which basically states that any symmetry transformation on a Hilbert space is either
unitary or anti-unitary, and we take D to be unitary. Since the Hilbert space is usually
infinite-dimensional, the representation D is rather unwieldy. However, in light of the
preceding discussion, we can split D into finite-dimensional irreducible components. If
we denote the set of irreducible representations by

{
D(µ)

}
, we can thus label the states

which transform under D(µ) by µ. For any group, the trivial representation will be D(1).
We further need to specify the state within the representation by an integer i running
from 1 to dim D(µ), and there will other labels – the physics of the state, e.g. the energy,
which we collectively denote by x. Hence a state is completely characterised by

|µ, i, x〉 , (3.33)

For the hydrogen atom, µ corresponds to l, i to m and x to n. We can choose the states
orthonormal,

〈µ, i, x |ν, j, y〉 = δν
µδ

j
i δ

y
x . (3.34)

We use the convention that kets have upper and bras have lower indices. Note that
the x label might contain continuous variables (e.g. the energy for scattering states),
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then δy
x = δ(x − y) with the Dirac δ function. Now a symmetry transformation simply

reshuffles the states within an irreducible representation, but does not change µ or x.
Explicitly, we have

|µ, i, x〉 7−−−−−→
(
D(µ)(g)

)i

j
|µ, j, x〉 , 〈µ, i, x| 7−−−−−→ 〈µ, j, x|

(
D(µ)(g)†

)j

i
. (3.35)

Here the D(µ)’s are nice finite-dimensional matrices, rather than some infinite-
dimensional operator. We also assume that a given representation always contains the
exact same set of matrices rather than merely equivalent ones.

3.8.1 Tensor Operators

What is more, not only states, but also the operators come in representations of the
symmetry group. Clearly, the operators on a Hilbert space form an algebra, hence in
particular a vector space. You can convince yourself that the tensor transformation
law (3.32) defines an (infinite-dimensional) representation of the group on the space
of operators. Luckily, just as for the states, this representations is usually reducible,
that is, we can find sets of tensors that transform among themselves in some irreducible
representation. These are called tensor operators (here “tensor” roughly means “an
object that transforms under a definite representation of a group”). From the group
theory point of view, finding tensor operators is just reducing a representation (the only
difference being that there is no scalar product defined, so one cannot speak of unitary
representations).

Denote such a set of operators by Oi
(µ). Then they transform as

Oi
(µ) 7−−−−−→ D(g)Oi

(µ)D(g)† =
(
D(µ)(g)

)i

j
Oj

(µ) . (3.36)

Note the different products: On the left-hand side the product is in the infinite-
dimensional Hilbert space, while on the right-hand side it is in the finite-dimensional
space of representation µ. In particular, any operator that commutes with the symmetry
transformations (such as the Hamiltonian) satisfies DOD† = O, i.e. it is a tensor operator
in the trivial representation.

As a nontrivial example, consider again the hydrogen atom. A set of tensor oper-
ators in the l = 1 representation is given by the angular momentum operators: The
z-component acts on the whole Hilbert space as

Jz |nlm〉 = m |nlm〉 , (3.37)

i.e. its matrix elements are (Jz)
nlm

n′l′m′ = m δn
n′δl

l′δ
m
m′ . Under a rotation by −π/2 around

the x axis it transforms into the y-component,

D(g)JzD(g)† =
(
D(l=1)(g)

)i

j
J j = Jy , (3.38)

so the three components Jx, Jy and Jz form a tensor operator in the defining, that is
l = 1, representation, just as e.g. the position and momentum operators. Higher l tensor
operators include electric and magnetic multipole operators.
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3.8.2 Matrix elements of Tensor Operators

The important property of tensor operators is that they can change the representation of
a state: The product of a tensor operator O(µ) and a state in representation ν transforms
as

Oi
(µ) |ν, k, x〉 7−−−−−→

(
D(µ)(g)

)i

j

(
D(ν)(g)

)k

l
Oj

(µ) |ν, l, x〉 , (3.39)

which is the tensor product representation D(µ) ⊗ D(ν). This, together with the or-
thogonality relation (3.34), gives strong restrictions on the matrix elements of tensor
operators.

Let us first consider invariant operators, i.e. operators in the trivial representa-
tion. This means DOD† = O, hence they commute with the symmetry transforma-
tions. We cannot directly apply Schur’s lemma, because the representation D is re-
ducible. However, O and D also commute on the subspaces spanned by |µ, i, x〉 with
i = 1 . . . , dim D(µ), which transform under an irreducible representation. Hence, we
see that O must be proportional to the identity on each irreducible subspace, but the
proportionality factor may depend on the irreducible representation. Furthermore, they
do not change the representation. On the other hand, group theory does not tell us
anything about the action on the x parameters, so we can write

O |µ, i, x〉 =
∑

y

fµ(x, y) |µ, i, y〉 . (3.40)

This implies for the matrix elements

〈ν, j, y|O|µ, i, x〉 = fµ(x, y)δµ
ν δi

j . (3.41)

In other words, all the physics is contained in the function fµ(x, y), while the dependence
on the symmetry group is fixed.

Now for non-trivial representations: Consider a general tensor operator Oi
(µ) acting

on a state |ν, k, x〉. The product will be a state in the tensor product representation
D(µ) ⊗ D(ν) (which we will also denote by µ ⊗ ν),

Oi
(µ) |ν, k, x〉 =

∑

y

fµν(x, y) |µ ⊗ ν, ik, y〉 . (3.42)

If µ = 1, which we use to denote the trivial representation, this reduces to Eq. (3.40). In
contrast to Eq. (3.40), however, the tensor product representation is in general reducible,
so to use the orthogonality relation (3.34), we have to decompose it into irreducible
components. This we can do for each state in the sum individually,

|µ ⊗ ν, ik, y〉 =
∑

ρ,n

Cµνik
ρn |ρ, n, y〉 . (3.43)

Here the numbers Cµνik
ρn are called Clebsch–Gordan coefficients and measure the compo-

nent of state |ρ, n〉 in the product |µ, i〉 ⊗ |ν, k〉. Usually the component n in represen-
tation ρ is fixed by i and k, so the Cµνik

ρn has five free indices, and one can drop the sum
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over n. (This equation fixes the Clebsch–Gordan coefficients up to a phase, there some
convention needs to be imposed.)

This implies for the matrix element

〈
σ, a, z

∣∣Oi
(µ)

∣∣ν, k, x
〉

=
∑

y

fµν(x, y)
∑

ρ,n

Cµνik
ρn 〈σ, a, z |ρ, n, y〉

= fµν(x, z)Cµνik
ρa

(3.44)

This is a very powerful result: We have split the matrix element into a product of a
Clebsch–Gordan coefficient, which is a purely group-theoretical quantity, and a function
fµν(x, z) which does not depend on i, k or a. (This function is sometimes called the
reduced matrix element and written with double lines as

〈
ρ, z

∥∥O(µ)

∥∥ν, x
〉
.) The Clebsch–

Gordan coefficients can be calculated once and for all for a given group, or looked up
in tables. Then this equation can immediately tell you that a large number of matrix
elements vanishes, and that there are relations between others, just from group theory,
i.e. without ever calculating fµν(x, z).

For the particular case of SO(3), Eq. (3.44) is known as the Wigner–Eckart theorem.
In this case, the irreducible representations are labeled by l ≥ 0 and the states within
the representation is specified by m, so states are specified by a ket |l,m〉 and the tensor
product of such states corresponds to the addition of angular momentum. There we
know that the m values add, while the l value of the final state is not fixed, so we have

|l,m〉 ⊗ |l′,m′〉 =
∑

L

C ll′mm′

L,m+m′ |L,m + m′〉 . (3.45)

We know (and will show later) that C ll′mm′

L,m+m′ = 0 unless |l − l′| ≤ L ≤ l + l′, and that
there is no state |L,M〉 for M > L. For the particular case of l = l′ = 1, we e.g. have

|1, 1〉 ⊗ |1, 1〉 = |2, 2〉 , (3.46a)

|1, 1〉 ⊗ |1, 0〉 =

√
1

2
|1, 1〉 +

√
1

2
|2, 1〉 , (3.46b)

|1, 0〉 ⊗ |1, 0〉 = −
√

1

3
|0, 0〉 +

√
2

3
|2, 0〉 , (3.46c)

|1, 1〉 ⊗ |1,−1〉 =

√
1

3
|0, 0〉 +

√
1

2
|1, 0〉 +

√
1

6
|2, 0〉 . (3.46d)

The other combinations follow from these ones – they are basically equal, up to some
minus signs. (The Clebsch–Gordan coefficients for l, l′ up to 2 are e.g. listed in the
Particle Data Book in Section 35.) The Wigner–Eckart theorem can be used e.g. to
derive the selection rules for the Hydrogen atom: The decay of excited states via photon
emission is mediated by a perturbed Hamiltonian H = H0+H ′, and H ′ gives the coupling
to the electromagnetic field. The perturbation can be expanded in tensor operators of
arbitrary l, but the coefficients are suppressed by powers of the fine structure constant
α. Since α ≈ 1

137
, the l = 1 term (dipole radiation) gives the dominant contribution to
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the decay rate Γ. For the transition from state |n, l,m〉 to |n′, l′,m′〉, the Wigner–Eckart
theorem then gives

Γ ∼
〈
n, l,m

∣∣HM
L=1

∣∣n′, l′,m′〉 = fLl′(n, n′)CLl′Mm′

lm . (3.47)

From the knowledge of the Clebsch–Gordan coefficients, we thus immediately know
that the dipole decay rate vanishes unless m = M + m′ and |l′ − 1| ≤ l ≤ l′ + 1. In
particular, the |n, l,m〉 = |2, 0, 0〉 state is metastable because it cannot decay via an
L = 1 perturbation of the Hamiltonian. (This might look as though angular momentum
is not conserved by the perturbed Hamiltonian, but this comes about because we are
neglecting the angular momentum of the emitted photon. The full Hamiltonian of the
combined atom-photon system is perfectly SO(3) symmetric, hence the total angular
momentum is conserved.)

3.9 Summary

• A representation is a map which assigns to each group element an endomorphism
of some vector space.

• Of particular importance are irreducible representations, i.e. those that do not
have invariant subspaces. For most groups of interest, all representations can be
completely decomposed into the irreducible ones.

• Schur’s Lemma states that any intertwiner between two irreducible representations
is either zero if the representations are not equivalent, or an isomorphism if they
are. This implies that every operator that commutes with all the elements of an
irreducible representation is a multiple of the identity.

• In quantum mechanics, the eigenspaces of the Hamiltonian carry a representation
of the symmetry group.

• Just as states do, tensor operators transform in representations of the symmetry
group. The matrix elements of tensor operators are strongly restricted by the
Wigner–Eckart theorem.
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Chapter 4

Discrete Groups

Now we turn to discrete groups. Discrete here roughly means that there is no notion
of “closeness”, i.e. that you cannot speak of a group element which differs only in-
finitesimally from another one. Practically, this also implies that discrete groups can
be parameterised by integers, such that G = {gi}, where i takes values in (a subset of)
Z. Actually, we will for the most part of this section restrict ourselves to finite discrete
groups, i.e. groups with a finite number of elements. Recall that the number of elements
is called the order of the group, sometimes denoted by |G|. This is not to be confused
with the order of a group element, which is the smallest number p such that gp = e.

We have already mentioned a few examples:

• The cyclic group Zn is a group of order n which consists of powers of a single
generating element for which θn = e, Zn = {θp}, p = 0, . . . , n − 1. This group is
Abelian. It can be realised e.g. by the n-th roots of unity under multiplication or
by the integers under addition modulo n. The cyclic groups show that there exist
finite groups for any order.

In physics, Zn groups can e.g. appear as discrete rotational symmetries of molecules
or crystal lattices.

• Lattices also have discrete translational symmetries, i.e. there is a basis of lattice
vectors ei such that a translation by niei leaves the lattice invariant. In three
dimensions, this is Z3, an infinite discrete Abelian group.

• A non-Abelian example is D4, the symmetry transformations of a square. D4

contains rotations and reflections.

• In some sense, specified in the next section, the most important discrete groups
are the symmetric groups Sn, the groups of permutations of n things. We will
discuss Sn in detail shortly.

We will now restrict to finite groups: G will generally be a discrete group of order
N . The multiplication law of discrete groups can be given in terms of a multiplication
table, where the rows and columns are labelled by the group elements, and the entry in
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row g1, column g2 is g1g2, see Table 4.1. Each row and each column must contain every
group element exactly once. The table is symmetric about the diagonal if and only if
the group is Abelian.

Table 4.1: The multiplication table. Every row
and every column is a permutation of the group
itself. Often one omits the first row and column
since they only repeat the group elements in orig-
inal order.

e g1 · · · gn

e e g1 · · · gn

g1 g1 g2
1 · · · g1gn

...
...

. . .

gn gn gng1 · · · g2
n

A nifty result for finite groups is Lagrange’s theorem: The order of any subgroup of
G is a divisor of the order of G. To prove this, denote the subgroup by H. If H = G, the
theorem is true. Otherwise, take an element g 6∈ H and consider the coset gH. Clearly,
|gH| = |H|, and H and gH are disjoint. If H ∪ gH does not contain all of G, continue
this process until you arrive at a decomposition

G = H ∪ g1H ∪ · · · gmH . (4.1)

Now the proof is complete: G has N elements, the set on the right hand side has m · |H|
elements, hence N = m · |H|. The number m is called the index of H in G.

Lagrange’s theorem has an interesting corollary: Since every element g ∈ G generates
a cyclic subgroup {gp} (note that any element of a finite group must have finite order),
the order of any element must divide the order of the group. Thus, if the order of G
is prime, G is a cyclic group generated by any of its elements. In other words, there is
only one group of order p if p is prime.

4.1 The Symmetric Group

The symmetric groups are rather important – one reason is Cayley’s theorem which we
will see shortly, and the other reason is that the representation theory of the symmetric
group will be helpful when finding the representations of SU(n) later. So let us now
consider the symmetric groups in more detail. The symmetric group Sn is the group of
all permutations of n things, or more formally, the group of bijections of an n-element
set. The group multiplication is the composition of bijections. This clearly satisfies the
group axioms. Simple combinatorics shows that the order of Sn is n!. Sometimes the
symmetric group is called permutation group, but we will use “permutation group” for
any group of permutations, i.e. also subgroups of Sn.

4.1.1 Cycles, Order of a Permutation

There are different ways of writing permutations. We can write this out explictly as

π =

(
1 2 · · ·n
π1π2 · · ·πn

)
, (4.2)
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meaning that the permutation maps element x1 to xπ1 etc. However, this notation is
not always convenient. Rather, one expresses the permutation in terms of cycles, sets of
objects that are permuted cyclically. As an example, consider the permutation of eight
elements

π =

(
12345678
23154768

)
(4.3)

We see that 1 gets mapped to 2, 2 gets mapped to 3 and 3 gets mapped back to 1, so
the cycle is closed and is written as (123). The next cycle is (45) since the permutation
just exchanges 4 and 5, and similarly, we get a cycle (67) Finally, 8 gets mapped to itself
and hence constitutes a cycle all by itself. So we can write the permutation as

π = (123)(45)(67)(8) . (4.4)

Since the cycles have no elements in common, they commute, e.g. (123)(45) = (45)(123).
Furthermore, we can start a cycle at any element, as long as we keep the cyclic order:

(123) = (231) = (312) 6= (132) . (4.5)

Finally, if it is clear how many elements we are permuting, we may omit one-element
cycles such as (8).

The order of a p-cycle is p. The inverse of a cycle is the cycle written backwards. If
a permutation is given as a product of non-independent cycles, one also has to reverse
the order of the cycles.

A two-element cycle, i.e. an interchange of two elements, is called a transposition.
Since any permutation can be obtained by interchanging two elements at a time, we can
write any cycle as a product of transpositions (which have elements in common, so they
will not commute). This, however, is not unique, e.g.

(1234) = (14)(13)(12) = (12)(23)(34) = (23)(12)(23)(12)(34) . (4.6)

Note the difference between resolving a permutation into independent cycles and decom-
posing a cycle into non-independent transpositions! We see that not even the number
of permutations is fixed. However, for a given permutation it is fixed whether it can be
written as an even or odd number of permutations, and correspondingly, the permuta-
tion is called even or odd, respectively (or has even or odd parity, or sign ±1). To see
that the sign of a permutation is well-defined, consider the polynomial in n variables xi

P (x1, . . . , xn) =
∏

i<j

(xi − xj) . (4.7)

Then we can define the sign of a permutation π as

sgn π =
P

(
xπ(1), . . . , xπ(n)

)

P (x1, . . . , xn)
. (4.8)

39



This coincides with our previous definition: Clearly, the sign is ±1 because the two
polynomials have the same factors up to a sign. Furthermore, each transposition takes
P → −P . Hence, a permutation of given sign cannot be written both as an even and as
an odd product of transpositions.

The example shows that (1234) is an odd permutation, and obviously this is valid
for any four-cycle. More generally, any p-cycle (12 · · · p) can be written as

(12 · · · p) = (1p)(1(p − 1)) · · · (12) , (4.9)

so any p-cycle is even if p is odd and vice versa. The parity of a product of indepen-
dent cycles (i.e. having no elements in common) is the product of the parities of the
cycles, so the even permutations (which include the identity) form a subgroup, called
the alternating group An, while the odd ones do not.

4.1.2 Cayley’s Theorem

The importance of the symmetric groups is that, in some sense, they contain all the
finite groups. More precisely, Cayley’s theorem states that every group G of order n is
isomorphic to a subgroup of Sn. The proof is left as an exercise.

Cayley’s theorem implies that there are only finitely many groups for a given order
n, since the finite Sn can have only finitely many subgroups. The permutation groups
obtained in this way have a special property: They are regular, meaning that permuta-
tions other than the identity leave no element unchanged. From this it follows that if
g 6= g′, πg and πg′ never map an element to the same element, i.e. πg(xi) 6= πg′(xi) for
all i. Furthermore, in the cycle decomposition of a permutation in a subgroup of regular
permutations, all cycles must be of the same length.

4.1.3 Conjugacy Classes

We will later see that the irreducible representations of a group are in one-to-one cor-
respondence to the conjugacy classes. Let us therefore discuss the conjugacy classes of
the symmetric group. Here it is more convenient to use the two-line notation. We take
two permutations π and σ,

π =

(
1 · · · n

π(1) · · ·π(n)

)
, σ =

(
1 · · · n

σ(1) · · ·σ(n)

)
. (4.10)

The elements conjugate to π is then

σπσ−1 =

(
1 · · · n

σ(1) · · ·σ(n)

)(
1 · · · n

π(1) · · ·π(n)

) (
σ(1) · · · σ(n)

1 · · · n

)

=

(
σ(1) · · · σ(n)

σ(π(1)) · · ·σ(π(n))

) (4.11)
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To see this, note that

σ−1 =

(
σ(1) · · ·σ(n)

1 · · · n

)
,

(
1 · · · n

σ(1) · · ·σ(n)

)
=

(
π(1) · · · π(n)

σ(π(1)) · · ·σ(π(n))

)
. (4.12)

In other words, the conjugate element is obtained by applying σ to both lines. The main
message of Equation (4.11) is that the conjugate permutation has the same cycle struc-
ture as the original one. This can also be seen in the following way: If the kth element
is part of a p-cycle, this means that πpk = k. Then the conjugate permutation satisfies
(σπσ−1)

p
(σk) = σk, i.e. the element σk is part of a p-cycle for the new permutation.

This argument also shows that besides the cycle structure, nothing is preserved under
conjugation since σ is an arbitrary permutation.

As an example, consider S5. The possible cycle structures, i.e. the conjugacy classes
are

K0 = {e} , K1 = {(..)} , K2 = {(..)(..)} , K3 = {(...)} ,

K4 = {(..)(...)} , K5 = {(....)} , K6 = {(.....)} .
(4.13)

Here, (..) denotes any two-cycle etc. The elements in K0, K2, K3 and K6 are even and
form the alternating group A5.

For a general Sn, we can denote the cycle structure by an n-tuple ν of nonnegative
integers, where each number νp gives the number of p-cycles. Here we also count 1-cycles.
Then the νp have to satisfy one consistency condition,

∑

p

pνp = n , (4.14)

since there are n elements to be permuted altogether. A conjugacy class is formed by
all elements of given cycle structure (ν). A very useful way of generating all conjugacy
classes is as follows: We can introduce a new set of n parameters λn, defined as

λp =
n∑

q=p

νq . (4.15)

Then the λp satisfy

∑

p

λp = n , λ1 ≥ λ2 ≥ · · · ≥ λn . (4.16)

This shows that the conjugacy classes are in one-to-one correspondence with the par-
titions of n. For example, class K2 defined in Eq. (4.13) has one one-cycle and two
two-cycles, so ν1 = 1, ν2 = 2 and ν3,4,5 = 0. Hence the λ’s are λ5,4,3 = 0, λ2 = 2 and
λ1 = 3. If one writes the cycle structure in terms of the λp, one usually omits trailing
zeroes, so the classes in Eq. (4.13) can be denoted

K0 = (5) , K1 = (41) , K2 = (32) , K3 = (311) ,

K4 = (221) , K5 = (2111) , K6 = (11111) .
(4.17)

41



Partitions like this are often given in a diagrammatical way, by Young tableaux or Young
diagrams. They are made of n boxes, arranged in consecutive rows of λp boxes each, e.g.

(221) ∼ (4.18)

The Young diagram has to satisfy the rule that rows and columns do not get longer
going right or down. Note that while the row lengths give the λ’s, the columns directly
show the cycle structure: This conjugacy class has one three-cycle and one two-cycle
because it has one column of length three and one of lengths two.

As an aside on notation, note that we will later use Young tableaux with numbers
in them. Various authors make a distinction between the empty tableau which they call
diagram, and the numbered one, which they then call tableau. However, I will use both
names interchangeably, and it should be clear from the context which type of diagram
is meant.

4.2 Representations

4.2.1 The Regular Representation

The regular representation is a representation where the group acts on itself. To define
this properly, let us first introduce an auxiliary concept, the group algebra R. This is a
vector space of (formal) linear combinations1 of group elements, i.e. of vectors like

v =
∑

g

vgg . (4.19)

Addition is defined componentwise, i.e. v +w =
∑

g(vg +wg)g. We take the components
vg to be complex numbers, and this clearly is a vector space. However, it is even an
algebra. (Recall that an algebra is a vector space with an extra bilinear “product”
operation. Depending on what extra properties the product satisfies, one can have
different types of algebra; this algebra will turn out to be a unital associative algebra.)
The product is of course the group product, which extends to the algebra in the obvious
way:

v · w =
∑

g,g′

vgwg′gg′ =
∑

h

(
∑

g

vgwg−1h

)
h . (4.20)

Note that we have a natural inclusion of the group into the algebra, since v = g can be
regarded as a vector itself. We will not distinguish between g as a group element and g
as a vector.

1If you don’t feel comfortable with “formal linear combinations”, you can think of functions on the
group instead: Any function f(g) defines a vector

∑
g
f(g)g and vice versa.
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The group algebra is a |G| = N -dimensional vector space, on which the group now
acts in the obvious way: To a group element g we assign the endomorphism

Dreg(g) : v 7−−−−−→ g · v . (4.21)

This is the regular representation.
We define an inner product on the group algebra in the usual way: The group

elements as basis vectors are orthonormal, and the inner product is antilinear in the first
and linear in the second argument. Hence,

〈v, w〉 =
∑

g

v∗
gwg . (4.22)

The regular representation is unitary with respect to this inner product since

g · v =
∑

h

vhgh =
∑

h′

vh′g−1h′ , (4.23)

i.e. (g · v)h = vhg−1 , so the components are just reordered, which does not change the
sum. This also shows that in the basis of group elements, the matrix form of the regular
representation just consists of zeroes and ones such that each row and each column
contains exactly one one.

We immediately see that the regular representation is reducible: The vector

V =
∑

g

g (4.24)

defines a one-dimensional invariant subspace, on which Dreg acts as the trivial represen-
tation, Dreg(g)V = V . The orthogonal space is not irreducible either (assuming N > 2)
– if one considers e.g. the symmetric group, there is another one-dimensional subspace
generated by

A =
∑

π

sgn π π =
∑

π even

π −
∑

π odd

π (4.25)

on which the representation acts as multiplication with the sign, Dreg(π)
∣∣
〈A〉 = sgn π.

We will later see that the regular representation actually contains all irreducible repre-
sentations.

4.2.2 Orthogonality Relations

Let D(µ) and D(ν) be two irreducible representations of G of dimensions dµ and dν , acting
on spaces Vµ and Vν . (Note the change of notation here – in the lecture I had used nµ

for the dimension.) Consider the operator

(
A

(ja)
(µν)

)i

b
=

∑

g

(
D(µ)(g)

)i

j

(
D(ν)(g

−1)
)a

b
, (4.26)
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where we have taken two of the indices as labels and two as actual operator indices.
This way, A(µν) is a family of maps from Vν to Vµ labelled by (ja),

Vν ∋ ub 7−−−−−→
(
A

(ja)
(µν)

)i

b
ub = vi ∈ V(µ) . (4.27)

For the moment we suppress the indices except (µν).
Now we multiply A(µν) by D(µ)(g) from the left:

D(µ)(g)A(µν) =
∑

g′

D(µ)(g)D(µ)(g
′)D(ν)(g

′−1) =
∑

g′

D(µ)(gg′)D(ν)(g
′−1)

=
∑

h

D(µ)(h)D(ν)(h
−1g) =

∑

h

D(µ)(h)D(ν)(h
−1)D(ν)(g)

= A(µν)D(ν)(g)

(4.28)

Hence A(µν) satisfies the requirement of Schur’s Lemma, so we deduce that either µ 6= ν,
then A(µν) = 0, or µ = ν, then Aµν ∼ 1. 2 Hence we can choose the same set of indices
for both representations, and write

(
A

(kl)
(µν)

)i

j
= δµνδ

i
jλ

(kl)
µ . (4.29)

To determine λ
(kl)
µ , we take the trace in the Hilbert space Vµ. Note that this is now

well-defined since A(µν) is an endomorphism when it is nonzero. Applying the trace to
the original definition (4.26), we find

tr
(
A

(kl)
(µν)

)i

j
= δµν

(
A

(kl)
(µµ)

)i

i
= δµν

∑

g

(
D(µ)(g

−1)
)l

i

(
D(µ)(g)

)i

k︸ ︷︷ ︸
D(µ)(g

−1)D(µ)(g)=1

= δµνNδl
k . (4.30)

Here N is again the ordwer of the group. The trace of the right-hand side of Eq. (4.29)
gives

tr δµνδ
i
jλ

(kl)
µ = δµνλ

(kl)
µ δi

i = δµνλ
(kl)
µ dµ . (4.31)

Taking this together, we have

λ(kl)
µ =

N

dµ

δl
k , (4.32)

and the orthogonality theorem for representations

∑

g

(
D(µ)(g)

)i

k

(
D(ν)(g

−1)
)l

j
=

N

dµ

δµνδ
i
jδ

l
k . (4.33)

2Note that here we have – as we always will – assumed that all equivalent representations are given
by the same set of matrices. Otherwise, it might happen that µ 6= ν, but the representations are
equivalent and A(µν) would be an isomorphism, but not necessarily the identity.
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If the representation is unitary, we can rewrite this as

∑

g

(
D(µ)(g)

)i

k
)
(
D∗

(ν)(g)
)j

l
=

N

dµ

δµνδ
i
jδ

l
k . (4.34)

This, in turn, can be restated in the following way: The group algebra elements

vi
µj =

√
dµ

N

∑

g

(
D(µ)(g)

)i

j
g (4.35)

form an orthonormal set with respect to the inner product defined above. This in
particular means that they are linearly independent, which gives a restriction on the di-
mensions of the irreducible representations: The number of linearly independent vectors
cannot be larger than the dimension of the vector space, which is N . Hence we have

∑

µ

d2
µ ≤ N . (4.36)

We can even show that these vectors form a basis, i.e. that every vector can be
expressed as a linear combination. Specifically, we will show that the group elements,
which form a basis of the group algebra, can be thus expressed. Note first that we can
write a group element as

g =
∑

h

(Dreg(h))e
g h . (4.37)

To see that this is true, recall first that any row of Dreg contains exactly one one, and
the rest is zero, so the sum on the right-hand side actually contains only one term. It
is the correct one because (Dreg(h))e

g is one exactly for that h for which Dreg(h)e = g,
i.e. for h = g. Now we use that fact that the regular representation is unitary, so it is
completely reducible into irreducible components, which have to be (some of) the D(µ),
i.e. Dreg(g) = U

(
D(µ1) ⊕ D(µ2) ⊕ · · ·

)
U †. This implies that each matrix element of Dreg

is a linear combination of matrix elements of the irreducible components,

(Dreg(h))e
g =

∑

µ,i,j

c(geij)
µ

(
D(µ)(h)

)i

j
, (4.38)

where we don’t know much about the coefficients, except that they are independent of
h. However, this is all we need, because it implies that the gs are linear combinations
of the vi

µj defined above:

g =
∑

h

(Dreg(h))e
g h =

∑

h

∑

µ,i,j

c(geij)
µ

(
D(µ)(h)

)i

j
h =

∑

µ,i,j

c(heij)
µ

√
N

dµ

vi
µj . (4.39)

45



In conclusion, the basis of group elements g, and hence every element of the group
algebra, can be expressed in terms of the vectors vi

µj, which are furthermore linearly
independent, so they form a basis. This makes the inequality in Eq. (4.36) strict:

∑

µ

d2
µ = N . (4.40)

Note that this in particular implies that the number of irreducible representations is
finite. Furthermore, since the vi

µj are linearly independent, they all appear in the regular
representation, or in other words: The regular representation contains all irreducible
representations as components.

4.3 Characters

For a given representation D, the character is defined as the trace of the representation
matrix,

χ(g) = tr D(g) . (4.41)

The characters are rather useful because they are easier to handle than the full repre-
sentation, but still carry much of the information. They are easier because they are
just numbers instead of matrices, and because the trace is invariant under similarity
transformations,

tr D(g) = tr AD(g)A−1 . (4.42)

This follows from the cyclic property of the trace, trAB = tr BA. This implies that
equivalent representation have the same characters, and that all elements in one con-
jugacy class have the same character. The neat thing is that the converse is also true,
i.e. nonequivalent representations can be distinguished just by their characters. The
characters will help us to reduce representations into their irreducible components.

Let us first derive an orthogonality theorem for characters. Recall the orthogonality
theorem for representations, Eq. (4.33):

∑

g

(
D(µ)(g)

)i

k

(
D(ν)(g

−1)
)l

j
=

N

dµ

δµνδ
i
jδ

l
k .

To get the characters, set k = i and l = j and sum over i and j. On the left hand side
we obtain the traces which we denote by χ(µ)(g) = tr D(µ)(g), on the right hand side we

have δi
jδ

j
i = δi

i = dµ, so we find the orthogonality theorem for characters:

∑

g

χ(µ)(g)χ(ν)(g
−1) = N δµν , (4.43)
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or for unitary representations

∑

g

χ(µ)(g)χ∗
(ν)(g) = N δµν . (4.44)

Note that for finite groups, all representations are equivalent to unitary ones, so that is
not a restriction.

Now we can use the fact that the characters are constant on the conjugacy classes.
Label the classes by Ka, a = 1, . . . , k, where k is the number of classes, and let nr label
the number of elements on class Kr. Since the characters do not depend on the individual
element within the class, we denote the character in class Ka as χa

(µ). Then (4.44) can
be rewritten as

∑

a

naχ
a
(µ)χ

a∗
(ν) = N δµν . (4.45)

This implies that the vectors

1√
N

(√
n1 χ1

(µ),
√

n2 χ2
(µ), . . . ,

√
nk χk

(µ)

)
(4.46)

form an orthonormal set in a k-dimensional space, labelled by the irreducible represen-
tations. Hence, r ≤ k: The number of irreducible representations, r, is smaller or equal
to the number of conjugacy classes k.

4.3.1 Finding Components of Representations

Before we go on to show that r = k, we will use characters to find the irreducible
components of a given representation. If a representation is reducible, its character
is a sum of the characters of the components, i.e. if D = D(1) ⊕ D(2), the character
is χ(g) = χ(1)(g) + χ(2)(g). This follows from the invariance of the trace under basis
changes – we do not have to actually transform D to block-diagonal form. (Similarly, the
character of the tensor product of two representations is the product of the characters.)
More generally, if

D =
⊕

aµD(µ) , (4.47)

the character is

χ =
∑

aµχ(µ) . (4.48)

Here the aµ are nonnegative integers. If D itself is irreducible, also the character is called
simple or irreducible, otherwise the character is called a compound character. We can
now use the orthogonality theorem (4.45) to project out the coefficients:

∑

a

naχ
a∗
(ν)χ

a =
∑

µ

aµ
∑

a

naχ
a∗
(ν)χ

a
(µ) =

∑

µ

aµN δµν = Naν , (4.49)
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hence the coefficients are

aν =
1

N

∑

a

naχ
a∗
(ν)χ

a . (4.50)

This also shows that representations which have the same characters are equivalent.
Hence, two representations are equivalent if and only if they have the same characters.

The expression (4.50) for the coefficient has the structure of a scalar product in the
space of conjugacy classes. If we take the product of the character (4.48) with itself, we
obtain

∑

a

naχ
a∗χa =

∑

µ,ν

aµaν
∑

a

naχ
a∗
(µ)χ

a
(ν) = N

∑

µ

(aµ)2 . (4.51)

This provides a simple criterion for irreducibility: An irreducible representation has one
aµ = 1 and all others are zero, so if D is irreducible, the character satisfies

1

N

∑

a

naχ
a∗χa = 1 . (4.52)

Even if this quantity is larger than one but small, we can still gain some useful knowledge
about a representation, due to the fact that it must be a sum of squares of integers. So
e.g. if a representation has 1

N

∑
a naχ

∗
aχa = 2 or 3, it must be a sum of two or three

different irreducible components.
We now apply this to the regular representation. You can easily convince yourself

that the character is

χreg(g) =

{
N for g = e ,
0 for g 6= e .

(4.53)

From now on we will always denote the class of the identity by K1 and the corresponding
character by χ1

(µ) = dµ. (Clearly the trace of D(e) always gives the dimension of the

representation.) To find the coefficients of the irreducible representation in the regular
one, use the projection (4.50):

aµ =
1

N

∑

a

naχ
a∗
(ν)χ

a
reg =

1

N
χ1∗

(ν)χ
1
reg = dµ . (4.54)

Hence the coefficient of each irreducible representation in the regular representation is
given by its dimension. Note that this is not entirely unexpected from Eq. (4.40).

4.3.2 Conjugacy Classes and Representations

Now let’s show that r = k. To do this, recall that we have found r ≤ k by regarding
χa

(µ) as r vectors in an k-dimensional space and using the orthogonality theorem. We
will now turn this around and develop a similar orthogonality relation, considering the
characters as k vectors in a r-dimensional space. In other word, we want to arrive at an
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expression of the form
∑

µ χa∗
(µ)χ

b
(µ) ∼ δab which would complement Eq. (4.43) to show

k ≤ r.
We first look at the regular representation. The previous section has shown that its

character is given by

N for a = 1
0 for a 6= 1

}
= (χreg)a =

∑

µ

dµχ
a
(µ) =

∑

µ

χ1
(µ)χ

a
(µ) (4.55)

This shows that the character of the identity, considered as a r-component vector in the
space of representation, is orthogonal to the other characters. We have to extend this
to all classes.

Since the characters are constant over conjugacy classes, we have to reduce the group
algebra to care only about classes. We do this by introducing the class vectors

Ka =
∑

g∈Ka

g . (4.56)

The class vectors are invariant under conjugation, gKag
−1 = Ka. The product of two

class vectors again has this property since

gKaKbg
−1 = gKag

−1gKbg
−1 = KaKb . (4.57)

Thus it is itself a sum of class vectors. We can write this as

KaKb =
∑

c

cabcKc . (4.58)

Hence the Ka form an algebra themselves (the class algebra), fixed by the coefficients
cabc. Note that this algebra depends only on the group, but not on any representation.
There is one thing we can say about the coefficients immediately: For a given conjugacy
class Ka, there is a class Ka′ whose elements are the inverses of those in Ka, and na = na′ .
Note that Ka might be equal to Ka′ . Then the product KaKa′ contains na copies of the
identity, while for b 6= a′, the identity is not contained in KaKb. This means

cab1 =

{
na for b = a′ ,
0 for b 6= a′ .

(4.59)

Let us now transfer this to representations. In a given irreducible representation
D(µ), the class vectors are represented by

Da
(µ) =

∑

g∈Ka

D(µ)(g) . (4.60)

They commute with all elements of the representation and hence are proportional to the
identity, Da

(µ) = λa
(µ)1. To find the λa

(µ), we take the trace and find (no sum over a here!)

naχ
a
(µ) = λa

(µ)dµ = λa
(µ)χ

1
(µ) , (4.61)
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so

λa
(µ) =

naχ
a
(µ)

χ1
(µ)

. (4.62)

Imposing the algebra (4.58), we find

λa
(µ)λ

b
(µ) =

∑

c

cabcλ
c
(µ) , (4.63)

and using Eq. (4.62) gives

nanbχ
a
(µ)χ

b
(µ) = χ1

(µ)

∑

c

cabcncχ
c
(µ) . (4.64)

To obtain a generalisation of Eq. (4.55), we sum over µ and use (4.55) and (4.59) to
obtain

∑

µ

χa
(µ)χ

b
(µ) =

∑

c

cabc
nc

nanb

∑

µ

χ1
(µ)χ

c
(µ) = cab1

n1

nanb

N =

{
N
nb

for b = a′ ,

0 for b 6= a′ .
(4.65)

This can be summarised as
∑

µ

χa
(µ)χ

b
(µ) =

N

nb

δa′b , (4.66)

and since χa′

(µ) =
(
χa

(µ)

)∗
, we finally find

∑

µ

χa∗
(µ)χ

b
(µ) =

N

nb

δab . (4.67)

Hence, the k vectors
√

na

N

(
χa

(1), χ
a
(2), . . . , χ

a
(r)

)
(4.68)

form an orthonormal set in the r-dimensional space of irreducible representations, and
so we conclude that k ≤ r. Together with the discussion below Eq. (4.46), this implies
that

r = k , (4.69)

the number of representations is equal to the number of conjugacy classes.

The two orthogonality statements (4.45) and (4.67) can be summarised as follows: In
the character table, Table 4.2, the rows are orthogonal and the columns are orthogonal
when weighted with na. Furthermore, the squared length of the first column must be
equal to the order of the group, and Eq. (4.64) implies that any product of two numbers
in the same row must be expressible as a linear combination of the other numbers in a
way that does not depend on the row.
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K1 · · · Kk

D(1) χ1
(1) χk

(1)
...

. . .

D(k) χ1
(k) χk

(k)

Table 4.2: A character table. The columns are
labelled by the classes Ka, the rows by the irre-
ducible representations D(µ). The first row con-
sists of only 1’s, while the first column contains
the dimensions of the representations.

4.4 Representations of the Symmetric Group

So far we have discussed general properties of representations. However, orthogonality
statements and equations like (4.50) do not help us much if we don’t know the irreducible
representations or at least their characters. In this section we will therefore outline a
systematic way to construct all irreducible representations for Sn. Unfortunately, I will
not have time to prove most of the statements I make here, so this section is partially
only a recipe, albeit an easy and powerful one.

In the previous section, we have shown that the number of irreducible representations
is equal to the number of conjugacy classes, and in Section 4.1.3 we saw how the conju-
gacy classes are in one-to-one correspondence with the Young tableaux. Furthermore, we
saw that each irreducible representation appears in the regular representation. Putting
all this together, we will show how to find all irreps in the regular representation starting
from the Young tableaux. This method involves finding projectors onto the invariant
subspaces, so we first have to discuss the relation between projectors and subspaces.

4.4.1 Reducibility and Projectors

Any invariant subspace V of the group algebra is characterised by D(g)v ∈ V whenever
v ∈ V , or in the algebra language

v ∈ V ⇒ gv ∈ V ∀g . (4.70)

Clearly this property extends to linear combinations of group elements, that is, to all
vectors in the group algebra. In algebra parlance, a subspace for which v ∈ V implies
wv ∈ V for all w is said to be a left ideal3. Note that an ideal is in particular not only
a vector subspace, but also a subalgebra. An ideal which does not contain nontrivial
ideals is called minimal – this corresponds to irreducible subspaces. Since the regular
representation is completely reducible, the algebra decomposes into a direct sum of
minimal ideals,

R =
⊕

i

Vi . (4.71)

The Vi share only the zero vector, Vi ∩ Vj = {0} whenever i 6= j. Any element of
R is uniquely expressible as a sum v =

∑
i vi, where vi ∈ Vi. Similarly, the regular

representation splits as Dreg(g) =
⊕

i Di(g).

3A left ideal is an ideal that is invariant under multiplication from the left, but it is formed by acting
with a projector from the right.
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In particular, the identity element can be expanded as e =
∑

i ei. Combining this
with the defining property of the unit, we have

v =
∑

i

vi = ve =
∑

i

(vei) . (4.72)

Here vi ∈ Vi, but also vei ∈ Vi since ei is in the left ideal Vi. Hence,

vi = vei , (4.73)

the ideals are generated by the ei (by multiplication from the right). Note that in
principle, each algebra element v generates the ideal Rv. However, if v is invertible, i.e.
if there is a algebra element w such that wv = e, then Rv = R, so only non-invertible
algebra elements generate nontrivial ideals. Now applying this to v = ei, we see that

ei = e2
i , eiej = 0 if i 6= j . (4.74)

So the ei are orthogonal projectors. They are called primitive if they cannot be written
as a sum of orthogonal projectors. Clearly, primitive projectors correspond to irreducible
subspaces.

Hence, the irreducible representations of a finite group are in one-to-one correspon-
dence with the primitive idempotents in the group algebra, and in the next section we
will see a method that systematically provides all projection operators.

As examples, consider again the vectors

V =
∑

π

π , A =
∑

π

sgn π π ,

which we introduced before. They are essentially projectors in the sense that

V 2 = n!V , A2 = n!A , (4.75)

i.e. they are projectors up to normalisation, so V/n! and A/n! are true projectors. We
will mostly not care about the normalisation in the following.

4.4.2 Young Tableaux and Young Operators

The operators V and A already hint at the general idea of finding irreducible representa-
tions – symmetrisation and antisymmetrisation. To see this more easily, it is convenient
to make a clearer distinction between the algebra elements as operators and as states.
If we think of the group elements as basis of the representation space, we denote them
in ket notation by the result of the permutations, i.e. the permutation

π =

(
1 · · · n

π(1) · · ·π(n)

)
(4.76)
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is written as

|π〉 = |π(1) · · ·π(n)〉 . (4.77)

To make this more explicit, consider n = 3. We see that the space projected on by
V is spanned by

|V 〉 = |123〉 + |132〉 + |231〉 + |213〉 + |312〉 + |321〉 , (4.78)

while A projects onto

|A〉 = |123〉 − |132〉 + |231〉 − |213〉 + |312〉 − |321〉 . (4.79)

Here, |V 〉 is totally symmetric: It is invariant under every transposition (and hence
under every permutation), such as (12) |V 〉 = |V 〉. On the other hand, |A〉 is totally
antisymmetric: Every transposition changes the sign of the state, e.g.

(12) |A〉 = |213〉 − |231〉 + |132〉 − |123〉 + |321〉 − |312〉 = − |A〉 . (4.80)

It is then obvious that totally (anti)symmetric states belong to one-dimensional repre-
sentations, since they can at most change sign under any transposition.

The way to construct irreducible representations of higher dimension is now to con-
sider states of mixed symmetry, i.e. states which are symmetric under some transposi-
tions and antisymmetric under others. The projectors on such mixed-symmetry states
are constructed from the Young tableaux. For Sn, recall that a Young tableau (or Young
diagram) consists of n boxes, arranged in rows and columns aligned top and left such
that each row and each column does not have more boxes that the previous one. Hence
these are not valid tableaux:

, , . (4.81)

For a given tableau, one then has to write the numbers 1, . . . , n into the boxes. This
can be done in any order. The way the Young tableau determines the symmetrisation
is basically that numbers within rows are symmetrised and numbers within columns
are antisymmetrised. Explicitly, this is done as follows: Symmetrisation involves all
“horizontal permutations” π, which are those permutations that only permute numbers
within a row, while the antisymmetry is provided by the “vertical permutations” σ which
only permute numbers within columns. Their products are denoted by

P =
∑

π

π , Q =
∑

σ

sgn σ σ , (4.82)

and the desired projection operator is

Y = QP . (4.83)
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This operator (the Young operator associated to the tableau) projects onto an irreducible
invariant subspace. Note that we first symmetrise along the rows and then antisym-
metrise along the columns, so the result will in general not be symmetric anymore since
Q partially destroys the effect of P .

Permutations of the numbers within a diagram lead to conjugate projectors, and to
isomorphic representations. However, not all of these conjugate projectors are orthogonal
– they cannot be, since there are n! ways of writing the numbers, but not n! copies of each
representation in the group algebra. There is a “standard” rule of writing the numbers
which leads to a set of orthogonal projectors, namely the requirement that within each
row and column, the numbers increase going right or down. Miraculously, this rule gives
exactly all the copies of any representation in the regular representation.

As an example, consider again S3. The three allowed tableaux are

, , . (4.84)

To turn these into projection operators, we have to write the numbers 1,2 and 3 into
the boxes. For the first tableau, the only standard way is

1 2 3 . (4.85)

Since all numbers are within one row, any permutation is horizontal, whereas the only
vertical permutation is e. Hence the Young operator is

Y = P =
∑

π

π = V , (4.86)

and this diagram corresponds to the trivial representation.
Similarly, the third tableau only admits one standard number assignment,

1
2
3

. (4.87)

Now the rôles of horizontal and vertical are switched, and the projector is

Y = Q =
∑

π

sgn π π = A . (4.88)

Hence, the third diagram gives the parity representation. This is basically what we could
expect: Since rows and columns correspond to symmetrisation or antisymmetrisation,
respectively, having all boxes in one row or one column leads to totally symmetric or
antisymmetric representations. This directly extends to all the Sn.

Now let’s look at the second tableau. This admits two numberings:

1 2
3

and 1 3
2

, (4.89)
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so we have two orthogonal projectors. For the first one, the horizontal and vertical
permutations are

P1 = e + (12) , Q1 = e − (13) , (4.90)

so the projector is

Y1 = Q1P1 = e + (12) − (13) − (123) . (4.91)

You can check that it is essentially idempotent, Y 2 = 3Y . To see which subspace it
projects onto, we apply it to the basis elements:

Y1 |123〉 = |123〉 + |213〉 − |321〉 − |231〉 = v1 ,

Y1 |132〉 = |132〉 + |231〉 − |312〉 − |213〉 = v2 ,

Y1 |231〉 = |231〉 + |132〉 − |213〉 − |312〉 = v2 ,

Y1 |213〉 = |213〉 + |123〉 − |231〉 − |321〉 = v1 ,

Y1 |312〉 = |312〉 + |321〉 − |132〉 − |123〉 = − (v1 + v2) ,

Y1 |321〉 = |321〉 + |312〉 − |123〉 − |132〉 = − (v1 + v2) .

(4.92)

We see that this space is two-dimensional (as it should be, since we already know the
representations of S3). The second number assignment leads to a different projection
operator,

Y2 = Q2P2 = (e − (12)) (e + (13)) = e − (12) + (13) − (132) . (4.93)

You can check that this one is orthogonal to the previous one, Y1Y2 = 0. Hence it
projects onto a different subspace, which is spanned by

Y2 |123〉 = |123〉 − |213〉 + |321〉 − |312〉 = w1 , (4.94)

Y2 |132〉 = |132〉 − |231〉 + |312〉 − |321〉 = w2 . (4.95)

It is now clear that there can be no more orthogonal projectors, since the represen-
tation is two-dimensional and hence appears twice in the regular representation. Any
other, non-standard, numbering leads to a projector which is not anymore orthogonal
to the previous ones. For example,

2 3
1

Ã Y3 = e − (12) + (23) − (123) , (4.96)

for which Y1Y3 6= 0 6= Y2Y3.

4.4.3 Characters, the Hook Rule

The method outlined in the previous sections systematically and explicitly gives us all
irreducible representations of the symmetric groups Sn. However, for larger groups,
it becomes rather tedious to work out the projectors and check the dimensions of the
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associated spaces. If one is only interested in the characters, there is a simpler way:
The Frobenius formula can give you every character in any representation. However,
it is still rather involved and would take me a week to explain, so I won’t do it – it is
explained nicely in the book by Fulton and Harris, or the one by Hamermesh.

There is one character which is even much simpler to find – the character of the
identity element, i.e. the dimension of the representation. Up to now this involved
acting with the projector on every basis element and checking for linear dependence
relations, but there is a faster way, called the hook rule: For each Young tableau, a hook
is a line that comes in from the right, passes through the center of some boxes and at
some box turns downward, exiting the tableau at the bottom, like this:

(4.97)

Hence, for each box there is one hook which turns downward at that box,, and we can
assing to each box the number of boxes that hook passes through. For e.g. S14, a Young
tableau with hook numbers would be

8 6 5 4 1
6 4 3 2
5 3 2 1
1

. (4.98)

The product of these number is the hook factor H of the diagram, and the dimension of
the associated representation is

d =
n!

H
. (4.99)

For the example above, it would be

d

( )
=

14!

8 · 6 · 6 · 5 · 5 · 4 · 4 · 3 · 3 · 2 · 2 = 21021 . (4.100)

From the hook rule it is clear that a “mirrored” diagram, i.e. one where rows and columns
are interchanged, leads to the same dimensionality.

4.5 Summary

• Discrete group are those for which the elements are always finitely separated.

• A very important example is the symmetric group Sn, the group of permutations
of n things.

• For finite groups, we can form the group algebra, the space of linear combinations
of group elements. The group acts on the group algebra – this is the regular
representation.
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• For finite discrete groups, the number of irreducible representations is finite, and
they are all contained in the regular representation.

• Characters carry much of the information about a representation, in particular,
two representations are equivalent exactly if their characters coincide.

• For Sn, all irreducible representations can be constructed systematically using
Young tableaux.
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Chapter 5

Lie Groups and Lie Algebras

Now we will consider groups which are continuous, that is, groups which have a notion
of “closeness”. This happens e.g. for rotations, where rotations by an angle φ and by
φ + ǫ are close to each other if ǫ is small. This means that the group elements will be
parameterised by some real numbers (such as angles), in particular there are infinitely
many group elements.

The continuous groups relevant for physics are the Lie groups, groups which are also
manifolds. This immediately defines what we call the dimension of the group, which
intuitively determines how many “independent” transformations there are. We will
then see that actually the manifolds of Lie groups are not so very interesting, because
they are very restricted and almost all the information is contained in the tangent space
at a point, the Lie algebra, which corresponds to “infinitesimal group elements”. In the
next chapter we will then extensively study Lie algebras and their representations.

5.1 Definition, Examples

Definition 14. A Lie group is a group G which also has the structure of a differentiable
manifold. The group and manifold structure are required to be compatible in the sense
that product and inverses are continuous maps. This can be combined in the requirement
that the map

G × G −−−−−→ G

(g1, g2) 7−−−−−→ g1g
−1
2

(5.1)

is continuous. The dimension d of the group G is the dimension of the manifold.

Recall that a d-dimensional manifold is a generalisation of the notion of a surface.
We will encounter them in two types: The more intuitive concept is a submanifold,
which is a subset of Rm specified by some constraint equations. (One can also define
complex manifolds by replacingR withC and “differentiable” with “holomorphic” in the
following. However, we will only consider real manifolds, i.e. groups with real parameters.
Otherwise we will make no distinction between real or complex functions, matrices etc.
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and denote both R and C by K.) The simplest example is the n-sphere Sn, which as the
subspace of Rn+1 satisfying |~x|2 = 1. The dimension of a submanifold is the dimension of
the embedding space minus the number of constraints (if the constraints fulfill a certain
regularity condition). This notion is easy to visualise, and one can denote each point on
the manifold simply by its coordinate ~x in the embedding space.

However, one is actually interested just in the manifold, without discussing the am-
bient space. Thus, to isolate the properties of the manifold, one can choose coordinates
which cover only the manifold and not the full Rm. For the two-sphere, one such coordi-
nate system is the familiar longitude/latitude system used for coordinates one earth. We
can then express the ~x values as a function of the coordinates (this is an embedding), but
we don’t have to – indeed we usually don’t. Rather, we take the coordinates to define
the manifold. Generically we cannot cover the full manifold with one set of coordinates
– for the sphere, the latitude/longitude coordinates miss the poles and the half-circle
between them at the longitude ϕ = 180◦, because we require that the coordinates come
from an open set and the map from the manifold to the coordinates is bijective. The
poles are missed because they have more that one coordinate, the north pole e.g. is
defined by ϑ = 90◦ and any longitude (in the usual earth coordinates, where latitude
ranges form 90◦ to −90◦, and the equator is at ϑ = 0◦ – for the mathematical sphere one
usually takes the “polar angle” θ to range from 0 to π radians). The half-circle between
the poles is missed because we can approach it from both sides with the open set, but
since that cannot overlap itself because of bijectivity, there is one line it cannot reach.
Topologically, this is also clear because the sphere is compact while an open set is not,
so there cannot be a continuous bijection between them. However, we reach all but a
set of measure zero, so for most practical applications, one set of coordinates is enough.

To formalise this a bit, an abstract manifold (without embedding space) is defined
by an atlas : We cover G by open sets Ui and define a set of charts to Rd, i.e. invertible
maps

φi : G ⊃ Ui −−−−−→ Vi ⊂ Rd . (5.2)

Since we usually cannot cover the manifold with a single such map, we have to re-
quire that on the overlap of the open sets Uij = Ui ∩ Uj, the change of coordinates is
differentiable, i.e. the maps

φj ◦ φ−1
i : Vi −−−−−→ Vj (5.3)

are differentiable bijections. Differentiability of functions on the manifold is defined via
the charts, e.g. functions f : K → G or g : G → Km are differentiable if the composed
maps

φi ◦ f : K −−−−−→ Vi and g ◦ φ−1
i : Vi −−−−−→ K

m (5.4)

are differentiable (for g, this is required for all i, for f it is only necessary for those i for
which Ui intersects the image of f).
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For general manifolds, the maps φ−1
i are called coordinates, i.e. a group element g is

said to have coordinates φ−1
i (g), and the atlas defines a coordinate system. For group,

we usually use the names parameters and parameterisation.
So in the end, the definition says the group elements are parameterised by a set

of d real numbers αa, such that none are redundant. Furthermore, for two elements
g1 = g(αa) and g2 = g(βa), the inverse and product are also parameterised such,

g−1
1 = (g(αa))−1 = g(α̃a) , (5.5)

g1g2 = g(αa) g(βa) = g(γa) , (5.6)

and the α̃a and γa are differentiable functions of αa and βa.

Notes:

• In principle, one can consider Cn–Lie groups, i.e. groups where the manifold and
the group operations are n-fold continuously differentiable. However, that is not
very interesting: Once a Lie group is continuous, it is already smooth, and if the
manifold is finite-dimensional (which we always assume), it is analytic (Hilbert’s
fifth problem).

• This carries over to Lie group homomorphisms: Continuity implies smoothness,
and for finite-dimensional groups even analyticity. We always assume group ho-
momorphisms, and hence representations, to be continuous.

• Lie groups admit a unique translationally invariant measure (the Haar measure),
so integration over the group is well-defined.

• We will generically choose the identity element to correspond to the origin in
parameter space, i.e. e = g(0).

5.1.1 Examples, Topology

The topological properties of the group are those of the underlying manifold: Groups
are said to be compact, connected, simply connected etc. if the manifold is. Examples:

• For connectedness, we already saw that the O(n) are not connected, since the
determinant of the group elements can take only two values, ±1. So O(n) consists
of two disjoint connected components: SO(n), the matrices with determinant one,
and the component with determinant −1. The U(n) groups, on the other hand,
are connected (the argument does not apply since the determinant can take any
complex value eiφ).

• SO(2) ∼= U(1) is connected, but not simply connected: Any R ∈ SO(2) can be
written as

R =

(
a −b
b a

)
, a2 + b2 = 1 . (5.7)
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Thus the manifold is the unit circle S1, which is not simply connected. We can
parameterise S1 by an angle ϕ to obtain the usual parameterisation of SO(2),

R(ϕ) =

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
. (5.8)

On the other hand, elements of SU(2) can be written as

U =

(
α β
−β̄ ᾱ

)
with |α|2 + |β|2 = 1 , (5.9)

so they form the three-dimensional unit sphere S3, which is simply connected.
Interestingly, these are the only spheres that are also Lie groups, due to strong
restrictions on the topology of the manifold.

Recall that a space is simply connected if every closed curve (a loop) can be con-
tracted to a point. Clearly, this is not true for a curve that wraps around S1.

• A general (topological) space is compact if each open cover contains a finite cover.
This is a rather abstract (though important) notion. Luckily, for subsets of Rn,
there is a simpler criterion: They are compact if and only if they are closed and
bounded.

Clearly, SO(2) and SU(2) are compact (note that we didn’t need to introduce
parameters for SU(2) to see this). A non-compact example would be SO(1, 1), the
Lorentz group in two dimensions. It is defined as the group of linear transforma-
tions of R2 which leave the indefinite inner product

〈~v, ~u〉 = v1u1 − v2u2 (5.10)

invariant, and have determinant one. It can be written similarly to SO(2) as

Λ =

(
a b
b a

)
, a2 − b2 = 1 , (5.11)

and parameterised by χ ∈ R as

Λ(χ) =

(
cosh χ sinh χ
sinh χ cosh χ

)
. (5.12)

Hence, as a manifold, SO(1, 1) ∼= R. Actually, since Λ(χ)Λ(ξ) = Λ(χ + ξ), this
isomorphism hold for the groups as well.

As another example for non-compact groups, consider GL(n,K), which is neither
bounded nor closed.

In this chapter we will generically only consider compact Lie groups.
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Figure 5.1: The tangent space TgG
at point g of the manifold G. The
tangent vector X is generated by
the curve k(t).

5.2 Some Differential Geometry

Since Lie groups are analytic manifolds, we can apply the apparatus of differential ge-
ometry. In particular, it will turn out that almost all information about the Lie group
is contained in its tangent space at the identity, the Lie algebra.

Intuitively, the tangent space is just that: The space of all tangent vectors, i.e. all
possible “directions” at a given point. When considering submanifolds, the tangent
space can be visualised as a plane touching the manifold at the point g, see Fig. 5.1.
Mathematically, the notion of a tangent vector is formalised as a differential operator –
this makes intuitive sense since a tangent vector corresponds to “going” into a particular
direction with a certain “speed”, i.e. the length of the vector, you notice that you move
because things around you change. Hence it is reasonable that tangent vectors measure
changes, i.e. they are derivatives.

5.2.1 Tangent Vectors

We now have to introduce a bit of machinery: A curve is a differentiable map

k : R ⊃ I −−−−−→ G , (5.13)

where I is some open interval. (Note that the map itself is the curve, not just the image.)

Definition 15. Let k : (−ε, ε) → G be a curve with k(0) = g. The tangent vector of k
in g is the operator that maps each differentiable function f : G → K to its directional
derivative along k,

X : f 7−−−−−→ X[f ] =
d

dt
f(k(t))

∣∣∣∣
t=0

. (5.14)

The set of all tangent vectors in g is called the tangent space of G in g, TgG. This is
naturally a vector space: For two tangent vectors X and Y and a real number λ, define
the sum and multiple by

(X + Y )[f ] = X[f ] + Y [f ] , (5.15)

(λX)[f ] = λX[f ] . (5.16)
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One can find curves that realise the vectors on the right-hand side, but we only care
about the vectors.

Tangent vectors are defined independently of coordinates. Practically, one often
needs to calculate a tangent vector in a given coordinate system, i.e. a particular map
φi. Then we have

X[f ] =
d

dt
(f ◦ k(t))

∣∣∣∣
t=0

=
d

dt

(
f ◦ φ−1

i ◦ φi ◦ k(t)
)∣∣∣∣

t=0

= d
(
f ◦ φ−1

i

)∣∣
g
· d

dt
φi(k(t))

∣∣∣∣
t=0

(5.17)

Even more practically: if the elements of Vi, i.e. the coordinates around g, are given by
xa, then it is a common abuse of notation to write the curve as φ (k(t)) = xa(t) and the
function

(
f ◦ φ−1

i

)
(xa) = f

(
φ−1

i (x)
)

as f(x). Thus we get

X[f ] =
∂

∂xa
f(x) · d

dt
xa(t) . (5.18)

Here we again use the summation convention: An index that appears twice (the a) is
summed over. The nice thing about this way of writing the tangent vector is that we
have separated the f -dependent and k-dependent pieces, and we can even write the
tangent vector without referring to f as the differential operator

X =
d

dt
xa(t)

∣∣∣∣
t=0

· ∂

∂xa
= Xa∂a (5.19)

Hence, the partial derivatives along the coordinate directions provide a basis for the
tangent space at any given point, called the coordinate basis. Clearly, the dimension
of the tangent space is equal to the dimension of the manifold. The Xa are called the
components of X. This way of writing a vector comes at the price of introducing a
coordinate system, and the components of the vector will depend on the chosen coor-
dinates (as it should be: components depend on the basis). However, so do the partial
derivatives, and the vector itself is entirely independent of the coordinates. Hence one
often speaks of “the vector Xa”.

5.2.2 Vector Fields

So far we have considered vectors at a given point. The next step is to extend this to the
whole manifold is the notion of a vector field, roughly speaking a vector-valued function
on G.

Definition 16. A vector field is a map that associates a vector X(g) ∈ TgG to each
point g ∈ G.

In a given map we can choose the coordinate basis and write the components as
functions of the coordinates, i.e.

X = Xa(x)∂a . (5.20)
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Clearly, the vector fields form a vector space (over R) themselves. In contrast to the
tangent space at a point, which is a d-dimensional vector space, however, the space of
vector fields is infinite-dimensional, since every component is a function on G.

The vector fields do not only form a vector space, but an algebra. However, one
cannot simply act with one vector field on another because the result would not be a
first-order differential operator, so the product will be more sophisticated:

Definition 17. Given two vector fields X and Y , the Lie bracket is a vector field given
by

[X,Y ] [f ] = X[Y [f ]] − Y [X[f ]] . (5.21)

This is a reflection of the fact that derivatives on manifolds are not directly straight-
forward. There are tangent vectors, which a priori can only act on (scalar) functions
on the manifold, but not on vectors. The Lie bracket allows to extend the action to
vector fields. The Lie bracket is thus sometimes called a Lie derivative, LXY = [X,Y ].
This is not anymore truly a directional derivative as it was for functions: It depends
not only on X at the point g. To see this, observe that for any function f : G → K,
we can define a new vector field X ′ = fX. Assume that f(g) = 1, so that X ′∣∣

g
= X

∣∣
g
.

Then one could expect that at g also the derivatives coincide, but actually we have
LX′Y = fLXY − Y [f ] X, and the second term does not vanish in general. To define
“more standard” derivatives, one has to introduce a connection (or covariant derivative)
– this is what happens in gauge theories and in general relativity.

The vector fields with the Lie bracket as product now form an algebra, which is
different from the group algebra we encountered in Chapter 4 – it is a Lie algebra:

Definition 18. A Lie algebra is a vector space over K with a product [·, ·] (the Lie
bracket) satisfying the following properties:

• Linearity: [aX, Y ] = a [X,Y ] and [X1 + X2, Y ] = [X1, Y ] + [X2, Y ],

• antisymmetry [X,Y ] = − [Y,X], and

• the Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Note in particular that the algebra is neither associative (instead it has the Jacobi
identity, which can be understood as the Leibniz rule for Lie derivatives) nor unital (there
cannot be a unit element, because antisymmetry implies that [X,X] = 0, so the “unit”
would annihilate itself). Whenever we have an algebra with a “normal” (associative)
product, such as for matrices, we can turn that into a Lie algebra by choosing the product
to be the commutator [A,B] = AB − BA. Then the defining properties are obviously
fulfilled.

As for groups, we can define homomorphisms between Lie algebras:

Definition 19. A Lie algebra homomorphism between two Lie algebras A and B (over
the same field) is a linear map that preserves the Lie bracket, i.e. a map

f :
A −−−−−→ B

a 7−−−−−→ f(a)
(5.22)
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such that

f([a, b]) = [f(a), f(b)] . (5.23)

An invertible Lie algebra homomorphism is a Lie algebra isomorphism.

5.3 The Lie Algebra

The tangent vectors form a Lie algebra on any manifold. Now we will use the group
property: We can multiply elements to form new elements. On the manifold, this
corresponds to a motion:

Definition 20. Take a fixed element h. Multiplication by h defines the left translation

Lh :
G −−−−−→ G

g 7−−−−−→ Lhg = hg
. (5.24)

In coordinates, this is expressed as follows: Assume that φ(g) = αa. Then left
translation induces a motion Lh : αa 7→ βa(α), such that φ(hg) = β. Of course, there is
also the right translation, but that does not give different results up to some ordering
switches.

Left translation is a bijection of G to itself. It also acts (more or less trivially) on
functions on the manifold: To a function f it associates a new function Lhf which is
simply the old function moved along the manifold, i.e.

(Lhf)(hg) = f(g) . (5.25)

Less trivial is the fact that it also induces a map on tangent vectors, the differential map
(or push-forward)

dLh : TgG −−−−−→ ThgG , (5.26)

which similarly maps the vector X at point g to the vector dLh · X at point hg defined
by

(dLh · X)[f(hg)] = X[f(g)] . (5.27)

This is sometimes written with a ∗ subscript as dLh = Lh∗. For maps from Kd to Km,
this is the familiar Jacobian (the matrix of derivatives ∂fa/∂xb).

The differential map allows us to single out a particular kind of vector fields, namely
those that are invariant under the differential maps of all left translations:

Definition 21. A vector field is called left-invariant if

X|hg = dLh · X
∣∣
g

for all g, h ∈ G . (5.28)
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Note that the X
∣∣
g

notation means “the vector field X at point g”, i.e. in coordinates,

the components of the vector are evaluated at that point, and it acts on functions defined
at g.

The definition implies that for left-invariant vector fields, the left-hand side of
Eq. (5.27) is again the same field at the point hg, i.e.

X
∣∣
hg

[f(hg)] = X
∣∣
g
[f(g)] . (5.29)

Hence this is a restriction of the g-dependence of the vector field X – it does not apply
to a vector at a given point. In coordinates this is written as

dLh · X
∣∣
g

= Xa(hg)
∂

∂xa(hg)
= Xa(g)

∂

∂xa(g)
= Xa(g)

∂xb(hg)

∂xa(g)

∂

∂xb(hg)

= Xa(g) (dLh)
b
a

∂

∂xb(hg)
.

(5.30)

Since left translation is the first time the group structure enters, the left-invariant vector
fields are the vector fields that “know” about the group, as opposed to any old vector
field which simply cares about the manifold structure. On a general manifold, we cannot
single out vector fields in this way – we cannot even compare vectors at different points
in a path-independent way.

The left-invariant vector fields form a subspace of the set of all vector fields. They
also form a subalgebra, since

dLh · [X,Y ]
∣∣
g

=
[
dLh · X

∣∣
g
, dLh · Y

∣∣
g

]
=

[
X

∣∣
hg

, Y
∣∣
hg

]
= [X,Y ]

∣∣
hg

, (5.31)

i.e. Lie brackets of left-invariant vector fields are again left-invariant. Hence we found a
subalgebra of the algebra of all vector fields, and this subalgebra is determined by the
group structure. This motivates the definition of the Lie algebra proper:

Definition 22. The Lie algebra g of a group G is the space of left-invariant vector fields
with the Lie bracket as product.

The Lie algebra is generically denoted by the name of the group in lower case fraktur
letters, e.g. the Lie algebra of SU(n) is su(n).

If one in particular chooses g = e, left-invariance implies that

X
∣∣
h

= dLhX
∣∣
e
. (5.32)

Hence the vector field is determined by its value at the identity, or in other words: the
left-invariant vector fields are in one-to-one correspondence with the tangent vectors
at the unit element (or any other element, for that matter). This has two important
consequences:

1. The dimension of the space of left-invariant vector fields is equal to the dimension
of the group. (Note that this is quite a reduction from the infinite-dimensional
space of all vector fields! Of course, this is related to the fact that we imposed
infinitely many conditions.)
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2. All the information about the left-invariant vector fields is given by the tangent
space at the identity – we can move this tangent space to any place on the manifold.

Note that this implies that we can choose any basis on TeG and transport it to
any other point while it remains a basis. This has two immediate consequences for
the structure of the group manifold: First, it means the manifold is “parallelisable”,
which in turn means that the tangent bundle is trivial. This is a fancy way of saying
that the disjoint union of all tangent spaces is just the Cartesian product G × TeG, so
that the components of vector fields are indeed just functions of G. This is a rather
strong constraint. For example, among the spheres only S1, S3 and S7 have trivial
tangent bundle. (For S2, you might know the “hairy ball theorem” which states that
any vector field must vanish at at least one point. Thus the coefficients cannot be
arbitrary functions, and the tangent bundle cannot be trivial.) Second, it means that
all tangent spaces are basically the same, so also geometric properties such as curvature
are the same everywhere. These properties hint at that the geometry of Lie groups is
not particularly interesting, and it might be sufficient to analyse the Lie algebra. This
is more or less true – we will make this precise in Section 5.5.

5.4 Matrix Groups

5.4.1 The Lie Algebra of Matrix Groups

Since most Lie groups of interest in physics are matrix groups, it is worthwhile to look
at those in more detail. Let us consider GL(n,K), since this is the most general one. As
coordinates we choose the entries of the matrices, so that a matrix g is parameterised by
g = gi

j. In particular, the identity is e = δi
j. Then the left translation, as multiplication,

acts as

Lhg = hg = hi
kg

k
j . (5.33)

Its differential is

(dLh)
i l
j k =

∂ (hg)i
j

∂gk
l

= hi
kδ

l
j (5.34)

The left-invariant vector fields can be obtained from the tangent vectors at the iden-
tity. Denote such a vector by

V = V i
j

∂

∂gi
j

∣∣∣∣
g=e

. (5.35)

The vector field XV corresponding to V is given by acting on V with the differential,

XV

∣∣
h

= dLhV = (dLh)
i l
j k V k

l

∂

∂hi
j

= hi
kδ

l
jV

k
l

∂

∂hi
j

= (hV )i
j

∂

∂hi
j

, (5.36)
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i.e. the component of XV at the point h is just hV , interpreted as a matrix product.
This gives us a very important formula for the Lie bracket: Let XV and XW be two
vector fields obtained from tangent vectors V and W as above. The Lie bracket is a new
vector field, which at point h is given by

[XV , XW ]|h =

((
XV

∣∣
h

)i

j

∂

∂hi
j

(
XW

∣∣
h

)k

l
−

(
XW

∣∣
h

)i

j

∂

∂hi
j

(
XV

∣∣
h

)k

l

)
∂

∂hk
l

=

(
hi

mV m
j

∂

∂hi
j

hk
nW

n
l − hi

mWm
j

∂

∂hi
j

hk
nV

n
l

)
∂

∂hk
l

= hk
m

(
V m

jW
j
l − Wm

jV
j
l

) ∂

∂hk
l

= h [V,W ]
∂

∂h
.

(5.37)

In the last line, the square brackets indicate not the Lie bracket of vector fields, but
the matrix commutator! That means that we can identify the Lie algebra of GL(n,C)
with the components V i

j of tangent vectors and use the usual matrix commutator as the
product, which is a huge simplification. This is the way we will discuss Lie algebras in
the following.

5.4.2 The Lie Algebra of GL(n,K) and Subgroups

We will now quickly discuss the Lie algebras of the classical matrix groups, which all
are subgroups of GL(n,C) or GL(n,R). Since we saw before that the Lie algebra is
determined by the tangent vectors V at g = e, we need to derive constraints on the
components V i

j.
The general idea is as follows: Recall that tangent vectors can be defined as deriva-

tives of curves and consider a curve g(t) with g(0) = e. Around the identity, it can be
expanded as

g(t) = e + tB + O
(
t2

)
(5.38)

with some matrix B, which will be the component matrix of the tangent vector. To
determine the tangent space, we have to impose the defining constraints on the group
and see what that implies for B:

• For GL(n,K), the constraint is that the determinant is nonzero. This is satisfied
for any B as long as t is small enough, so there is no restriction: The Lie algebra
gl(n,K) consists of all n × n matrices with entries in K.

• For SL(n,K), the determinant must be one. Since

det(1+ tB) = 1 + t tr T , (5.39)

we see that the tangent space contains all traceless matrices – this reduces the di-
mension by one. Note that tracelessness is a reasonable constraint in the sense that
it is conserved under addition, scalar multiplication and taking the commutator.
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• The unitary groups require that K = C. The constraint for U(n), g†g = e, is, to
first order,

(1+ tB)† (1+ tB) = 1+ t
(
B + B†) + O

(
t2

)
. (5.40)

Hence B must be anti-Hermitean, B = −B†. Note here that there are two con-
ventions: Mathematicians work with anti-Hermitean B, while physicists usually
prefer Hermitean matrices and write B = iC with C = C†.

Matrices in su(n) have to be traceless in addition, just as for sl(n).

• The real variant of this is O(n). By the same argument as before, B has to be
antisymmetric, B = −BT . This is automatically traceless – the dimensions of
O(n) and SO(n) are the same. Since O(n) is not connected, it is also clear that
there is no curve from the identity to a matrix with determinant −1, so the tangent
space anywhere at SO(n) does not see O(n).

Again, some physicists add a factor i to deal with Hermitean matrices.

5.5 From the Algebra to the Group

It is straightforward to determine the Lie algebra of a given group, in particular it is
unique. This raises the question about the converse: Given a Lie algebra (as a vector
space with some bracket), is there always a Lie group, and is this group unique? And
how do we find it?

5.5.1 Lie’s Third Theorem

The importance of the Lie algebra is that the Lie algebra almost uniquely determines
the group. To be precise, we have Lie’s third theorem1, which we do not prove: Let
g be a Lie algebra of dimension d. Then there exists a unique connected and simply
connected d-dimensional Lie group G such that its Lie algebra is (isomorphic to) g.

So we see that the group always exists, while uniqueness involves two qualifiers,
which are related to the global structure of the group: The group is unique if it is
both connected and simply connected. The first one is obvious: Since the Lie algebra
corresponds to the tangent space at the identity, it does not know about disconnected
pieces – we saw already that o(n) = so(n). The second part is more interesting: The
group must be simply connected. Turning this around, this means that for each non-
simply connected Lie group G, there is a unique group G with the same algebra but
which is simply connected. This group is called the universal covering group.

As an example, consider SO(2) ∼= U(1) ∼= S1, which is not simply connected. Its
universal covering group must be one-dimensional and cannot meet back up with itself,
so it must be R (a one-dimensional manifold is isomorphic to either S1 or R). There

1Strictly speaking, this is the converse of Lie’s third theorem, but it is the more important statement.
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is a group homomorphism from R to S1, x 7→ e2πix with kernel Z, so we have the
isomorphism

S1 ∼= R/Z . (5.41)

Similarly, the algebras so(3) and su(2) are isomorphic, but the groups are not.
What can we say in general? Let G be the universal cover and G be a different group

with the same algebra. Then there is a surjective homomorphism f : G → G. The
kernel ker f is a normal subgroup, and we have the isomorphism

G ∼= G/ ker f . (5.42)

What is more, ker f is discrete (since the groups have the same dimension) and hence its
elements commute with all of G, i.e. ker f ⊂ Z(G). This shows that every such G can
be obtained from the universal covering group by dividing out a subgroup of the center.

5.5.2 The Exponential Map

We will now discuss how to go back from the algebra to the group, basically by inter-
preting the algebra elements as “infinitesimal group elements” and reconstructing the
finite elements. To do so, first consider the group G and a curve φ : R → G which
satisfies

φ(s)φ(t) = φ(s + t) . (5.43)

Such a curve is called a one-parameter subgroup, because it is a subgroup which has
one parameter (i.e. its image is a one-dimensional Lie group). Clearly, this subgroup is
Abelian, and we have φ(0) = e and φ(t)−1 = φ(−t).

The one-parameter subgroup defines a tangent vector at every φ(t) whose components
are

Xa(φ(t)) =
dφa(t)

dt
. (5.44)

This is not quite a vector field, since it is defined only on the curve. However, it is a
left-invariant “vector field” along the curve: From Eq. (5.30) we see that the components
of a left-invariant vector fields have to satisfy

Xa(hg) =
∂xa(hg)

∂xb(g)
Xb(g) . (5.45)

Restricting this to the curve, we take h = φ(t) and g = φ(s), hence hg = φ(t + s). From
the definition (5.44), we find by the chain rule

Xa(hg) = Xa(φ(t + s)) =
dφa(t + s)

d(t + s)
=

∂φa(t + s)

∂φb(s)

dφb(s)

ds
, (5.46)
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hence Eq. (5.45) is satisfied. On the other hand, one can show that a left-invariant vector
field uniquely defines a one-parameter subgroup (this is true basically because one has to
solve the ordinary differential equation (5.44) with boundary condition φ(0) = e, which
has a unique solution). The proof of these statements is contained in more detail in
Nakahara’s book.

Hence we see that one-parameter subgroups and left-invariant vector fields are in
one-to-one correspondence. Furthermore, rescaling the vector field X → λX simply
gives a rescaling of the parameter of the subgroup, t → t/λ. Since g ∼= TeG, we can thus
associate to each tangent vector V (at the identity) a one-parameter subgroup φV (t),
and φλV (t) = φV (t/λ). This motivates the following definition:

Definition 23. For a Lie group G and a tangent vector V ∈ TeG, the exponential map
is defined as

exp :
TeG −−−−−→ G

V 7−−−−−→ exp(V ) = φV (1)
. (5.47)

The rescaling property mentioned above translates to

exp(tV ) = φV

(
1

t

)
(5.48)

universal covering group G

connected, simply connected

Lie algebra g

G1 = G
D1

· · · Gp = G
Dp

Figure 5.2: Relationship between a Lie algebra, the associated groups and the universal
covering group. Wiggly lines correspond to linearisation, dashed lines to group quotients
and the full line to the exponential map.

The relations between the algebra, the covering group and its quotients are sum-
marised in Figure 5.2.
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The Exponential of a Matrix

For matrix groups, the exponential map is actually the exponential of the Lie algebra
elements. This can be seen by noting that the matrix exponential actually forms a one-
parameter subgroup with the correct boundary condition at the identity. Hence, for the
matrix Lie algebras we discussed in Section 5.4, we can express all group elements as
the exponential of some algebra element. Since the exponential of a matrix might not
be familiar to everybody, we will briefly discuss it here.

For any matrix A, the exponential is defined via the series expansion,

exp A = eA =
∞∑

n=0

1

n!
An . (5.49)

Some properties of the usual exponential of numbers carry over:

• It is by definition analytic, and the sum is absolutely convergent for any A.

• exp(0) = A0 = 1: It maps a neighbourhood of zero to a neighbourhood of the
identity. Furthermore,

d

dt
etA = AetA , (5.50)

which is nonzero. So for small enough t, the map t 7→ etA is invertible – it might
not be globally because there might be a nonzero t such that etA = 1 again.

• If the eigenvalues of A are λi, the eigenvalues of eA are eλi . This is obvious for
diagonalisable A, but still holds for any matrix (which you can bring to Jordan
form, where it is easy to see). This in particular implies that the eigenvalues, and
hence the determinant, of eA are never zero! What is more, we have

det eA =
∏

i

eλi = e
P

i λi = etr A . (5.51)

This is a very useful formula – remember it for life!

The main difference to the exponential of numbers comes form the fact that two ma-
trices do not commute in general, hence the product of exponentials is not simply the
exponential of the sum. Rather, we have the Baker–Campbell–Hausdorff (BCH) formula,

eAeB = eA+B+ 1
2
[A,B]+ 1

12
([A,[A,B]]+[B,[B,A]])+··· , (5.52)

where the dots stand for higher commutators. Note that the BCH formula only involves
commutators and not simple products, so it is well-defined on the Lie algebra! If A and
B commute, then the exponent on the right-hand side is just A + B, so we in particular
have (for numbers s and t)

etAesA = e(s+t)A and thus
(
etA

)−1
= e−tA . (5.53)
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As an example, consider so(2). As we have seen, that consists of the real antisym-
metric 2 × 2 matrices, so it is one-dimensional and spanned e.g. by

T =

(
0 −1
1 0

)
. (5.54)

To calculate the exponential, note that T 2 = −1, so the sum splits into even and odd
powers,

eαT =
∞∑

n=0

1

n!
(αT )n =

∞∑

n=0

(−1)n

(2n)!
α2n · 1+

∞∑

n=0

(−1)n

(2n + 1)!
α2n+1 · T

= cos α1+ sin α T =

(
cos α − sin α
sin α cos α

)
.

(5.55)

Hence we reach all of SO(2) in this way. Note that in this example the exponential map
is only bijective for t in a neighbourhood of zero since e2πT = 1 again.

As a remark, note that one can exponentiate other operators, e.g. derivatives: Assume
f(x) is analytic. Then the Taylor expansion is reproduced by the exponential, so we can
move the function:

exp

(
a

d

dx

)
f(x) = f(x + a) . (5.56)

5.6 Summary

• Lie groups are groups which are at the same time manifolds.

• Manifolds locally look like Rn, but can be rather different globally.

• Tangent vectors are differential operators at a point, vector fields are vectors that
vary over the manifold.

• For any manifold, the vector fields form an infinite-dimensional Lie algebra with
the Lie bracket. On Lie groups, the left translation picks out the left-invariant
vector fields which form the finite-dimensional Lie algebra associated to the Lie
group.

• For matrix groups, the Lie bracket of vector fields can be expressed as the matrix
commutator of tangent vectors at the identity.

• The algebra specifies the group uniquely up to connectedness and simply-
connectedness. The exponential map recovers the universal covering group from
the algebra.
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Chapter 6

Representations of Lie Algebras

As we saw in the last chapter, the Lie algebra carries (almost) as much information
as the group itself. But since in the algebra, we can add and multiply, rather than
only multiply, elements, the algebra is more convenient to work with. (This is also
why we used the group algebra for finite groups.) Hence, the task is now to classify
representations of Lie algebras. We will first make a few remarks on representations,
and then discuss representations of su(2) in detail before going into the more general
procedure.

6.1 Generalities

6.1.1 Structure Constants

Since the algebra is a vector space, we can choose a basis Ti of g, and the Ti are called
generators of the group. The Lie bracket is then fixed by its action on the basis elements:

[Ti, Tj] = fk
ijTk . (6.1)

The numbers fk
ij are called structure constants. There is again an issue with conventions:

Since [A,B]† =
[
B†, A†], the left-hand side is anti-Hermitean if T †

i = ±Ti. Hence, if
the generators are chosen Hermitean (physicists’ convention), the structure constants as
defined above are purely imaginary, so it is customary to include another factor of i to
make them real,

[
T ′

i , T
′
j

]
= if

′k
ij T ′

k . (6.2)

The f
′k
ij are called structure constants as well, and the prime is usually omitted, so one

has to keep in mind which convention is used. For now, we will stick to anti-Hermitean
generators and real structure constants, but we will change later when we discuss SU(2).

The structure constants inherit two properties from the Lie bracket:

1. Antisymmetry follows from the antisymmetry of the commutator, fk
ij = −fk

ji.
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2. The Jacobi identity translates to

fk
ijf

m
kl + fk

jlf
m
ki + fk

lif
m
kj = 0 . (6.3)

Turning this around, one can define a Lie algebra by postulating d generators Ti and
d3 numbers fk

ij satisfying these two properties.

6.1.2 Representations

A representation of a Lie algebra is, similarly to a group, a realisation of the algebra by
matrices:

Definition 24. A representation of a Lie algebra g is a Lie algebra homomorphism D
from g to a Lie algebra of matrices (or endomorphisms of a vector space) with the matrix
commutator as Lie bracket. The dimension of the representation is the dimension of the
vector space.

A representation is reducible if there is an invariant subspace.

Representations which are related by a similarity transformation are called equivalent.

Note that this implies that in a representation, the product of two generators is
well-defined, since it is simply the matrix product.

A representation of the algebra g gives us – via the exponential map – a representation
of the universal covering group G. This is not necessarily true for non-simply connected
groups Gi, i.e. some of the representations of g might not correspond to true represen-
tations of Gi. Reducible representations of the algebra lead to reducible representations
of the group. Note that, in contrast to group representations, the endomorphisms that
form a representation of the algebra are in general not invertible.

6.1.3 The Adjoint Representation

There is a representation which exists for every Lie algebra (besides the trivial one for
which D(X) = 0 identically), called the adjoint representation. The idea is similar to
the regular representation: The Lie algebra itself is a vector space, and the algebra acts
on itself by the Lie bracket. Hence we define the adjoint representation ad by

ad(X)Y = [X,Y ] . (6.4)

We will usually omit the ad and just write the commutator because the adjoint action is
basically the Lie algebra action itself. Clearly, the dimension of the adjoint representation
is equal to the dimension of the Lie algebra d. Note that the adjoint representation is
the infinitesimal version of the action of the group on itself by conjugation,

eXeY e−X = eY +[X,Y ]+··· = eY +ad(X)Y +··· . (6.5)
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It turns out that in a basis, the matrix elements of the adjoint representation are
given by the structure constants fk

ij: Given a set of generators, the matrix element

(ad Ti)
k
j is given by the coefficient of Tk in ad Ti · Tj, so we have

(ad Ti)
k
j = ad Ti · Tj

∣∣
Tk

= [Ti, Tj]
∣∣
Tk

= fk
ij . (6.6)

The matrices of the adjoint representation are purely real, since the fk
ij are. This is con-

sistent with anti-Hermiteanity since the Ti are real and antisymmetric. In a convention
with Hermitean generators, the matrix elements of the adjoint representation will be
imaginary.

6.1.4 Killing Form

Since in a representation, the product is well-defined, one can define a kind of scalar
product on the adjoint representation:

Definition 25. The Killing form is a bilinear form on the Lie algebra defined via the
adjoint representation as

(X,Y ) = k tr ad(X) ad(Y ) . (6.7)

Here k is a normalisation constant.

The trace again ensures that equivalent representations have the same Killing form.
Note that this scalar product is not necessarily positive definite!

If we have chosen a basis of generators Ti, we can associate a matrix gij to the Killing
form as

gij = tr ad(Ti) ad(Tj) = fk
ilf

l
jk , (6.8)

so it is also fixed by the structure constants. Clearly, g is a real symmetric matrix.

The “metric” gij contains a fair bit of information. In particular, we have that the
group G is compact if gij (or the Killing form) is negative definite, in which case also
the algebra is called compact (although it clearly is non-compact as a space!). Note that
the Killing form can never be positive definite.

If gij is nondegenerate, we can use it to raise and lower indices. In particular, we can
define structure constants with only lower indices by

fijk = f l
ijglk = tr ([Ti, Tj] Tk) . (6.9)

They are completely antisymmetric because the right-hand side is. We will often take
a “diagonal” form of the generators such that gij = −λδij, with λ a positive constant.
Then we can basically identify upper and lower indices (up to a factor of λ.
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6.1.5 Subalgebras

A Lie algebra g might have subalgebras, i.e. vector subspaces h ⊂ g which themselves
form a Lie algebra (with the same Lie bracket). Subalgebras generate subgroups. A
special type of subgroup is an invariant subgroup: h is an invariant subgroup if for every
H ∈ h and X ∈ g, the commutator [H,X] is again in h. (In algebra language, h is an
ideal.) Invariant subalgebras generate normal subgroups. In particular, the center of
the algebra, which is the set of those elements that commute with everything,

z(g) =
{
X ∈ g

∣∣ [X,Y ] = 0 ∀Y ∈ g
}

(6.10)

is an ideal. An algebra that does not contain nontrivial ideals1 is called simple. A simple
algebra generates a simple Lie group, which means a Lie group which does not contain
a continuous normal subgroup – discrete normal subgroups are still allowed, so a simple
Lie group need not be a simple group (which has no normal subgroups).

An algebra that does not contain Abelian invariant subalgebras (i.e. for which the Lie
bracket is identically zero) is called semisimple. In particular, for semisimple algebras,
the center is trivial. Semisimple algebras are direct sums of simple algebras.

The semisimplicity of an algebra can again be analysed by looking at the Killing
form: The algebra is semisimple if and only if the Killing form is nondegenerate.

We prove half of this theorem: For the first half, we show that if g is not semisimple,
i.e. it has an Abelian ideal B, the Killing form is degenerate. Choose a basis Ti of g such
that the first m elements span B and the remaining Ti 6∈ B. Then the Killing matrix
elements g1i are

g1i = f j
1lf

l
ij =

∑

k=l

f j
1kf

l
ij . (6.11)

The summand is obtained by

f j
1kf

l
ijTl = [Ti, [T1, Tk]] . (6.12)

We can consider three cases:

• If Tk ∈ B, the inner commutator vanishes because B is Abelian.

• If Ti ∈ B, the outer commutator vanishes because the inner commutator is in B.

• If both Ti, Tk 6∈ B, the inner and thus the outer commutator are in B, hence
Tl ∈ B, and so the summand vanishes for k = l.

Hence g1i = 0, and the Killing form is degenerate.
The converse is somewhat harder to show, so we just give a sketch: The key point is

that the null space of the Killing form, i.e. those X for which (X,Y ) = 0 for all Y , is an
ideal. We can bring the matrices to Jordan form, and then we see that the X in the null

1Clearly, 0 and g itself are trivially ideals, so nontrivial means other than those.
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space must have eigenvalues equal to zero, i.e. they are purely nilpotent. Then some
commutator power of them will be a nonzero Abelian ideal, hence g is not semisimple.

In a semisimple algebra, every generator thus has a nonzero commutator with at least
one other element. Furthermore, since the Killing form is nondegenerate, we can bring
it to a diagonal form with all entries ±1. In other words, the structure constants can be
“inverted” in the sense that every generator can be expressed as a linear combination of
commutators, hence it is in particular traceless.

Finally, note that the adjoint representation is irreducible for a simple algebra. If the
algebra is semisimple, the adjoint representation is reducible: The ideals form invariant
subspaces. If g contains Abelian ideals, the adjoint representation is not faithful, while
for semisimple algebras it is. Furthermore, for semisimple algebras, every representation
is completely reducible. Since a semisimple Lie algebra is a direct sum of simple ones,
so it suffices to consider simple Lie algebras in the following.

6.1.6 Real and Complex Lie Algebras

Up to now, we have (implicitly) restricted ourselves to real Lie algebras (i.e. algebras
over the real numbers), as those are what you get from a real manifold, since for complex
algebras it does not make much sense to choose Hermitean or anti-Hermitean generators,
and the Killing form is never definite. Note that a real algebra can involve complex
numbers – for example, su(n) contains complex matrices, but it is a real algebra, since
otherwise, restricting to (anti-)Hermitean matrices would not make sense.

However, in the following it will be useful to consider complex algebras, as we will
see. Hence we will at some point pass to the complexified algebra gC = g ⊗C (and we
usually omit the subscript). In practice, this means we retain the basis of generators,
but allow for complex coefficients. We will also consider representations on complex
vector spaces.

As an aside, note that for a given complex Lie algebra, there are several real algebras
of which it is the complexification. In particular, there are two distinguished real forms:
The compact real form for which the Killing form is negative definite and which conse-
quently generates a compact group, and the normal real form, for which the Killing form
is maximally non-definite, i.e. for which the number of positive and negative eigenvalues
of the Killing form is equal (or different by one, if the dimension is odd). We already
discussed the examples so(2) and so(1, 1) at the beginning of the previous chapter –
they are the two real forms of one complex algebra (basically two ways of embedding R
in C. We will not go into more detail here and consider the complex form most of the
time, but with the compact real form in mind.

6.2 Representations of su(2)

We will first discuss representations of su(2) (which you probably already know), to
obtain some intuition. In the next Section we will then generalise this to arbitrary
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simple algebras. We will switch conventions here: In the real form of the algebras, we
consider Hermitean generators and real structure constants.

6.2.1 Diagonalising the Adjoint Representation

The algebra su(2) contains three Hermitean generators Ji with commutation relations

[Ji, Jj] = iǫijkJk . (6.13)

This means that in the adjoint representation no generator is diagonal, e.g. ad(J1) ·J2 =
iJ3. As a first step, we will diagonalise one generator (since they do not commute, we
cannot diagonalise more than one), and it is customary to take J3. An easy calculation
shows that suitable linear combinations are

J± =
1√
2

(J1 ± iJ2) . (6.14)

Note that we have to allow complex coefficients here. The algebra is thus no longer
compact, as the J± are not Hermitean, but satisfy J†

± = J∓. However, we gain a
diagonal action of J3:

[J3, J±] = ±J± , [J+, J−] = J3 . (6.15)

6.2.2 Constructing an Irreducible Representation

Now let us consider a (as always finite-dimensional) representation on a complex vector
space. Since we have diagonalised J3 in the adjoint representation, we will also choose a
basis of our representation space where J3 is diagonal (remember J3 is still Hermitean,
so this is always possible, and the eigenvalues are real.) Denote the largest eigenvalue
by j,

J3 |j, α〉 = j |j, α〉 . (6.16)

Here α denotes possible other quantum numbers characterising the state. We choose a
normalisation

〈j, α |j, β〉 = δαβ . (6.17)

The commutation relations tell us that J± raise or lower the J3 eigenvalue by one,

J3J± |j, α〉 = (J±J3 + [J3, J±]) |j, α〉 = (j ± 1) J± |j, α〉 . (6.18)

Hence they called raising and lowering operators.
Since we have assumed that j is the largest eigenvalue of J3, we see that J+ |j, α〉 = 0.

On the other hand, J− will create a state with eigenvalue j − 1,

J− |j, α〉 = Nj |j − 1, α〉 . (6.19)

79



For the normalisation, observe first that this state is orthogonal to |j, α〉,

〈j, α |j − 1, α〉 =
1

Nj

〈j, α|J−|j, α〉 = 0 , (6.20)

since 〈j, α| J− = (J+ |j, α〉)†. You can convince yourself that this generalises to
〈j − k, α |j − l, α〉 ∼ δkl. Furthermore, we see that the orthogonality for different α
persists,

N∗
j Nj 〈j − 1, α |j − 1, β〉 = 〈j, α|J+J−|j, β〉

= 〈j, α| [J+, J−]|j, β〉 = j 〈j, α |j, β〉 = j δαβ .
(6.21)

Hence we can choose a real normalisation, Nj =
√

j (this involves a choice of the phase
of what we call |j − 1, α〉. We can raise the J3 eigenvalue again by applying J+,

J+ |j − 1, α〉 = Ñj |j, α〉

=
1

Nj

J+J− |j, α〉 =
1

Nj

[J+, J−] |j, α〉 =
j

Nj

|j, α〉 =
√

j |j, α〉 .
(6.22)

So we see that the normalisation constants are equal, Ñj = Nj.
Clearly now, we can generate more states by acting repeatedly with J−, and we go

back by applying J+. A simple generalisation of the above argument shows that all these
states will be orthogonal in α-space. Hence we drop the extra label henceforth, since
each value of α will simply lead to another copy of the same representation. (We have
already implicitly assumed that Nj does not depend on α). All that remains is to find
a general expression for the normalisations. To this end, we take

J− |j − k〉 = Nj−k |j − k − 1〉 , J+ |j − k − 1〉 = Nj−k |j − k〉 . (6.23)

By the same reasoning as above, the numbers are equal and can be chosen real.
Imposing the algebra, we find a recursion relation,

N2
j−k = 〈j − k|J+J−|j − k〉 = 〈j − k| [J+, J−]|j − k〉 + 〈j − k|J−J+|j − k〉

= j − k + N2
j−k+1 .

(6.24)

With the boundary condition Nj =
√

j, we find the solution

Nj−k =
1√
2

√
(2j − k) (k + 1) =

1√
2

√
(j + m) (j − m + 1) , (6.25)

where we have introduced the usual notation j − k = m.
In principle we could continue this indefinitely – but since we want finite-dimensional

representations, the series should terminate at some smallest m, which can only be
m = −j. Hence, m takes values from j to −j, with integer steps. From this it follows
that 2j must be an integer, and m takes 2j +1 values. Indeed, the trace of any operator
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is zero: J± are purely off-diagonal, and the eigenvalues of J3 are symmetric around zero.
(This is easy to see in this basis, but the trace is invariant under changes of basis.)

In summary, any irreducible representation of su(2) is labelled by a nonnegative
integer or half-integer j, and this representation is 2j +1 dimensional. The states within
the representation j are labelled by the integer or half-integer J3 eigenvalue m, ranging
from j to −j.

In quantum mechanics, j is sometimes called the spin of the representation, and m
is the “z-component”. In general group theory terms, the J3 eigenvalue is the weight of
the state. j is called the highest weight of the representation, and this method is the
highest weight construction.

The representations with integral and half-integral j differ in an important respect:
You saw on the problem sheet that SU(2) elements are given by an expression of the
form

U(n̂, φ) = eiφn̂· ~J (6.26)

with φ being 4π-periodic, U(n̂, 4π) = U(n̂, 0) = 1, while elements of SO(3) are similar,
but with periodicity 2π. For the representations we just found, J3 is diagonal, with
entries j, j − 1,. . . , −j, so we see that

eiφJ3 =




eijφ

ei(j−1)φ

. . .

e−ijφ


 . (6.27)

Hence it has periodicity 2π for integral and 4π for half-integral j – that means that only
integral j’s lead to representations of SO(3)! This is the group-theoretic basis for the
fact that orbital angular momentum (which is related to actual rotations in space, hence
SO(3)) has integer l, while the spin can take values in representations of the universal
covering group of SO(3), which is SU(2).

Note also that the adjoint representation corresponds to j = 1. This is already
apparent since it is three-dimensional. It can be explicitly constructed starting from the
highest weight state |j = 1,m = 1〉 = J+: The states are

|j = 1,m = 1〉 = J+ ,

|j = 1,m = 0〉 = ad J−J+ = −J3 ,

|j = 1,m = −1〉 = ad J−(−J3) = −J− .

(6.28)

6.2.3 Decomposing a General Representation

Finally, note that the preceding procedure does not necessarily exhaust the full rep-
resentation space: Not every state with weight m < j must descend from a weight-j
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state via lowering operators. Rather, the representation space might be a direct sum of
irreducible representations of different highest weight,

V =

jmax⊕

j=0

V
⊕nj

j . (6.29)

Each representation can appear with a multiplicity nj – this is what is counted by the
label α. To disentangle this, we now label the states with the J3 eigenvalue m and the
highest weight j. One can show that states with different j are orthogonal,

〈j,m |j′,m′〉 ∼ δjj′δmm′ , (6.30)

so the procedure to reduce a given representation into its irreducible components is as
follows:

1. Diagonalise J3 – its eigenvalues must be integers or half-integers (for reducible
representations, both can appear!), symmetrically arranged around zero.

2. Start with the highest eigenvalue jmax and go through the procedure outlined
above. You have now identified nj copies of representation jmax, V

⊕nj

jmax
.

3. Take the orthogonal complement of this subspace and repeat the procedure.

4. After a finite number of steps, you have decomposed the complete representation
space.

6.3 The Cartan–Weyl Basis

Now we extend the su(2) discussion to arbitrary semisimple compact Lie algebras. This
brings a separation of the algebra into two pieces: the Cartan subalgebra, which is the
analogue of J3, and the roots, which correspond to the raising and lowering operators.
Note that, in contrast to many other cases in physics, here it is convenient to single out
a particular (type of) basis instead of working basis-independent.

6.3.1 The Cartan Subalgebra

The first thing to do is again to “diagonalise the adjoint representation”, i.e. diago-
nalise the maximal number of elements. To that end, we need to find a maximal set of
Hermitean elements Hi that commute among themselves,

[Hi, Hj] = 0 , H†
i = Hi . (6.31)

Definition 26. The Hi are called the Cartan generators, and they span the Cartan
subalgebra h. The number of Cartan generators (i.e the dimension of h) is called the
rank r of the Lie algebra g.
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Recall that two commuting elements also commute as operators in the adjoint rep-
resentation. This is the analogue of J3 in the su(2) case. There is no element that
commutes with J3, so su(2) has rank one.

Note that the Cartan algebra is not unique - indeed in our su(2) example we chose
H = J3, but we could just as well have chosen J1. However, different choices of h are
related by automorphisms of g, so they do not lead to different results. In particular, any
Cartan subalgebra has the same dimension, so the rank is well-defined. (The construction
of such an automorphism is described in the book by Fuchs and Schweigert, Section 11.3.)

Since we will deal with the complexification of the algebra, it is convenient at this
point to define a new scalar product that involves Hermitean conjugation of the first
factor:

〈A,B〉 = k tr A†B . (6.32)

This product is always positive definite. The normalisation constant k is chosen equal
to the k in the Killing form (6.7), so the two scalar products coincide for Hermitean
operators. Hence, we can choose the Cartan generators to be orthogonal, 〈Hi, Hj〉 = δij,
and they are still orthogonal in the Killing form. What is more, Hermitean matrices are
self-adjoint with respect to the product 〈·, ·〉 in the sense that

〈A, ad H · B〉 = 〈A, [H,B]〉 = k tr A† [H,B] = k tr
[
A†, H

]
B = k tr

[
H†, A

]†
B

=
〈
ad H† · A,B

〉
,

(6.33)

i.e. an operator is self-adjoint if it is Hermitean as a matrix.

6.3.2 Roots

After we have fixed the Cartan subalgebra, we go on diagonalising the elements. This
means we choose a basis Eα of the remaining algebra satisfying

[Hi, Eα] = αiEα . (6.34)

This usually again requires that we pass to the complexified Lie algebra, i.e. we allow
complex coefficients. The eigenvalues αi are still real (since the Hi are Hermitean)
and are called roots. Each non-Cartan element is labelled by an r-component root
vector α = (α1, . . . , αr), and we will later see that α determines the generator uniquely.
(Sometimes the Eα generators are called roots themselves.) The set of all roots is called
the root space. The roots cannot be Hermitean, because we have

(αiEα)† = αiE
†
α = [Hi, Eα]† = −

[
Hi, E

†
α

]
, (6.35)

so actually we see that E†
α = E−α. This is the analogue of J†

± = J∓ in su(2). In
particular, this means that if α is a root, then −α is as well.
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Since the Eα with different roots have different eigenvalues with the Hermitean Car-
tan generators, they are orthogonal, 〈Eα, Eβ〉 = 0 for α 6= β. We will choose them
orthonormal,

〈Eα, Eβ〉 = k tr E†
αEβ = k tr E−αEβ = δαβ . (6.36)

To find the commutator of the roots, observe that

[Hi, [Eα, Eβ]] = (αi + βi) [Eα, Eβ] . (6.37)

Hence, in particular, [Eα, E−α] commutes with all the Cartan generators. Since the
Cartan subalgebra is maximal, it must be a linear combination,

[Eα, E−α] =
∑

i

ciHi . (6.38)

To find the coefficient, we take the scalar product with Hj and exploit the cyclicity of
the trace,

cj = 〈[Eα, E−α] , Hj〉 = k tr [Hj, Eα] E−α = αj 〈Eα, Eα〉 = αj . (6.39)

Hence,

[Eα, E−α] =
∑

i

αiHi = ~α · ~H . (6.40)

Before we go on and discuss commutators of different roots, we first exploit a nice
property of a root pair E±α: It forms a su(2) subalgebra. Specifically, the properly
normalised subalgebra is spanned by

E± =
1

|α|E±α ,

E3 =
1

|α|2
~α · ~H .

(6.41)

Here |α|2 = ~α ·~α is the usual Euclidean norm of the vector. We already know everything
about the representations of su(2), and since this subalgebra acts on all of g via the
commutator, g must decompose into irreducible representations of su(2). This will now
help us to establish two facts:

1. The root vector uniquely determines a generator.

2. The only multiples of a root which are roots themselves are ±α.

To show the first statement, assume the contrary: Take Eα and E ′
α be two generators

with the same root vector. We can choose them to be orthogonal,

〈Eα, E ′
α〉 = k tr E−αE ′

α = 0 . (6.42)
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Now E ′
α must be a state in some spin-j representation of the su(2) generated by Eα,

Eq. (6.41). We can act on it with the lowering operator E−, and we find that by
Eq. (6.37), the commutator [E−, E ′

α] ∼ [E−α, E ′
α] commutes with all the Hi. Thus, it is

a linear combination of Cartan generators, [E−α, E ′
α] = ciHi. However, we find that

ci = 〈H, [E−α, E ′
α]〉 = k tr E−α [E ′

α, Hi] = −αik tr E−αE ′
α = 0 . (6.43)

Hence, [E−, E ′
α] = 0 – the lowering operator annihilates the state E ′

α, hence it must be
the lowest weight state of an su(2) representation! In particular, the E3 eigenvalue must
be −j. On the other hand, a direct calculation shows that

[E3, E
′
α] =

1

|α|2
~α ·

[
~H,E ′

α

]
= E ′

α , (6.44)

so its weight is one. So we find a contradiction: The lowest weight of an su(2) repre-
sentation cannot be positive. Hence, there is no such E ′

α, and each α fixes a unique
generator.

For the second statement, assume there is a generator Eλα with some λ 6= ±1. Then
this has E3 eigenvalue λ,

[E3, Eλα] =
1

|α|2
~α ·

[
~H,Eλα

]
= λEλα . (6.45)

Hence λ must be an integer or half-integer. Assume first that λ is an integer. Then
we can apply E+ or E− a number of times and arrive at a state with eigenvalue one.
This, however, cannot be Eα, since that one is (as E+) part of a complete spin-one
representation. Hence, it is another state with he same root vector, which does not
exist. If now λ is a half-integer, we can redefine

Eλα −−−−−→ Eβ , Eα −−−−−→ Eβ/λ (6.46)

and apply the argument for β. Hence, only α and −α are roots.

Finally, what can we actually say about the commutators of different roots? Not so
much in general, but there is something. Recall that [Eα, Eβ] has root vector α+β. The
case α = −β was already discussed, see Eq. (6.40). Now consider the case α + β 6= 0.
Then we have to distinguish whether α + β is a root. If it is, we know that it is unique,
so we can conclude that the commutator is proportional to that generator,

[Eα, Eβ] = eα,βEα+β for α + β a root. (6.47)

eα,β is generically non-zero. It is constrained by the Jacobi identity: One can deduce
that

eα,β = eβ,−(α+β) = e−(α+β),α . (6.48)

On the other hand, if α + β is not a root,

[Eα, Eβ] = 0 for α + β not a root. (6.49)
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In summary, the algebra decomposes into the Cartan subalgebra, which is a maximal
set of mutually commuting elements, and the root generators, each of which is labelled
by an r-component root vector α. The commutation relations are

[Hi, Hj] = 0 , [Hi, Eα] = αiEα ,

[Eα, Eβ] =





~α · ~H if α = −β
eα,βEα+β if α + β is a root
0 if α + β is not a root

(6.50)

The basis of the Lie algebra consisting of the Hi and Eα is called a Cartan–Weyl basis.
Note that this basis is not unique: We have to choose a Cartan subalgebra, and its basis,
which, even after imposing orthonormality, is still subject to orthogonal transformations.
Furthermore, we have to choose particular root elements, which, however, involve only
a normalisation freedom. There is a further restricted basis, called the Chevalley–Serre
basis, but we will not go into this (see the book by Fuchs and Schweigert for details).

6.4 Roots and Weights

Now that we have found a nice basis for the algebra, i.e. the adjoint representation, let
us consider a general irreducible representation ρ. We can again diagonalise the Cartan
elements, such that the states obey

Hi |ω〉 = ωi |ω〉 . (6.51)

The r-component vector ω is called the weight vector (or just weight) of the state, and
the number of distinct weight vectors is the dimension of the representation. The set of
all weights is called the weight space. In the adjoint representation, we have ωad = α –
the roots are the weights of the adjoint representation! Then we immediately see that
the Eα are the analogues of J±, i.e. they change the eigenvalue of a state:

HiEα |ω〉 = (ωi + αi) Eα |ω〉 . (6.52)

It is not yet defined whether Eα is a raising or lowering operator – later we will choose
a convention for that. So either ω + α is again a weight of the representation, then we
have

Eα |ω〉 = Nα,ω |ω + α〉 , (6.53)

or ω + α is not a weight, then the state is annihilated, Eα |ω〉 = 0. Note that this also
implies that the difference of two weights of an irreducible representation is a sum of
roots.

6.4.1 The Master Formula

Now we can, for a given root vector, again exploit the su(2) subalgebra (6.41). Under
this su(2), each state must transform in an irreducible spin-j representation. For a
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given ω, we don’t know the m value, but we know that we can find all the states in the
representation by applying the E± operators a finite number of times. In other words,
there are nonnegative integers p and q such that the representation contains the states

Eq
− |ω〉 , Eq−1

− |ω〉 , . . . , E− |ω〉 , |ω〉 , E+ |ω〉 , . . . , Ep
+ |ω〉 , (6.54)

but no more,

Eq+1
− |ω〉 = 0 = Ep+1

+ |ω〉 . (6.55)

The spin of this representation clearly is j = 1
2
(p + q).

The weights of the states range from ω − qα to ω + pα. Their E3 eigenvalues are

E3 |ω + nα〉 =
1

|α|2
~α ~H |ω + nα〉 =

(~ω + n~α) · ~α
|α|2

|ω + nα〉 . (6.56)

They must range from −j to j,

−
(

~ω · ~α
|α|2

− q

)
= j =

~ω · ~α
|α|2

+ p , (6.57)

from which we again see that j = 1
2
(p + q), and

~ω · ~α
~α · ~α = −1

2
(p − q) . (6.58)

This formula looks innocent, but will be very important – we will refer to this as the
master formula. Part of its power is that it works in both directions, that is, if there is
a vector ω that satisfies the master formula for all roots and nonnegative integers p and
q, then ω is a weight vector.

As a side remark, the fact that the E3 eigenvalues are symmetric around zero leads
to a symmetry operation of the weights, the so-called Weyl reflection: The weight space
is mapped to itself under

ω 7−−−−−→ ω − 2
~ω · ~α
~α · ~α α , p 7−−−−−→ q , q 7−−−−−→ p . (6.59)

Geometrically, this corresponds to a reflection of the weights through the hyperplane
perpendicular to the root α. In the adjoint representation, Weyl reflections form part of
the automorphism group of the Lie algebra.

6.4.2 Geometry of Roots

As mentioned, roots are the weights of the adjoint representation, so we can apply the
master formula both ways. Take two roots α and β. Then we get

~β · ~α
~α · ~α = −1

2
(p − q) and

~α · ~β

~β · ~β
= −1

2
(p′ − q′) . (6.60)
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ω
ω + α

ω + 2α

ω − α
ω − 2α

ω − 3α
ω − 4α

α

Figure 6.1: The weight ω is part of a j = 3 representation of the su(2)α in the weight
space. Weyl reflections are reflections at the dashed line orthogonal to the root α.

Taking the product of both formulae, we obtain

(
~β · ~α

)2

~α2~β2
= cos2 θ =

1

4
(p − q) (p′ − q′) =

n

4
. (6.61)

Here θ is the angle between the roots, and n is an integer. Since the cosine is bounded,
n can take only take values from zero to four. Actually, four is not very interesting – it
corresponds to θ = 0, which means α = β (because of uniqueness), or θ = π = 180◦, i.e.
α = −β, which is always there. Hence there are only four nontrivial angles.

Taking the quotient of the original equations, we can also get some information on
the possible lengths of α and β, or actually their ratio,

~α2

~β2
=

p′ − q′

p − q
. (6.62)

Again, given that p, q, p′ and q′ are integers and their product must be zero to three,
we have only the four possibilities summarised in the table:

Hence the root diagram is rather constrained.

6.4.3 Example: su(3)

After all the dry theory, let us consider an example: su(3). Since SU(3) consists of the
unitary matrices with determinant one, su(3) contains the traceless Hermitean matrices
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n θ ~α2

~β2

0 90◦ arbitrary

1 60◦, 120◦ 1

2 45◦, 135◦ 1
2
, 2

3 30◦, 150◦ 1
3
, 3

Table 6.1: The possible angles and relative lengths of roots.

(in physicist’s convention), which is an eight-dimensional space. The customary basis is
Ta = λa/2, where the Gell-Mann matrices λa are

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .

(6.63)

The first three are an obvious embedding of the Pauli matrices of su(2). They are
normalised to trTaTb = 1

2
δab. This is chosen such that [T1, T2] = iT3. To make it

consistent with 〈Ti, Tj〉 = δij, we choose the normalisation constant in (6.7) and (6.32)
to be k = 2. Then the Killing metric is gij = δij, and we do not have to care about
upper and lower indices on the structure constants, i.e. fabc = f c

ab. The independent
nonvanishing structure constants are

f 123 = 2 f 147 = 2 f 246 = 2 f 257 = 2 f 345 = −2 f 156

= −2 f 367 =
2√
3

f 458 =
2√
3
f 678 = 1 .

(6.64)

This algebra has rank two. As Cartan generators one usually chooses H1 = T3 and
H2 = T8, which are already diagonal, so they commute. To find the roots, we have
to diagonalise the adjoint action of the Cartan elements. A straightforward calculation
gives

E±(1,0) =
1√
2

(
T 1 ± iT 2

)
, E±

“

1
2
,
√

3
2

” =
1√
2

(
T 4 ± iT 5

)
,

E±
“

− 1
2
,
√

3
2

” =
1√
2

(
T 6 ± iT 7

)
.

(6.65)
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So the roots are

α1 =

(
1

2
,

√
3

2

)
, α2 =

(
1

2
,−

√
3

2

)
, α3 = (1, 0) (6.66)

and their negatives. The roots are shown in Figure 6.2. We will use a notation where
superscripts label the roots, while subscripts label the vector components. (So the
subscripts are actually lower indices, while the superscripts are not proper indices, and
they do not take part in the summation convention. This is even more confusing because
both sub- and superscripts have the same range.)

H1

H2

(−1, 0) (1, 0)

(
1
2
,
√

3
2

)

(
1
2
,−

√
3

2

)

(
−1

2
,
√

3
2

)

(
−1

2
,−

√
3

2

)

Figure 6.2: The roots of su(3). Note that indeed the angles are multiples of 60◦. The
circles around the origin denote the two Cartan generators which have “root vector”
zero.

Of course, the Ta not only give the adjoint representation by acting on themselves,
but they naturally act on C3. For any matrix algebra, this is called the defining or vector
representation, and it is denoted by its dimension as 3. Since they are already diagonal,
the eigenvalues of H1 and H2 are simply the diagonal elements, and the eigenvectors are
the standard basis of C3. Hence the weights are

∣∣ω1
〉
≡




1
0
0


 =

∣∣∣∣
(

1

2
,

1

2
√

3

)〉
,

∣∣ω2
〉
≡




0
1
0


 =

∣∣∣∣
(
−1

2
,

1

2
√

3

)〉
,

∣∣ω3
〉
≡




0
0
1


 =

∣∣∣∣
(

0,− 1√
3

)〉
.

(6.67)

Note that indeed the differences of weights are roots.
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There is even a third representation we can construct from the Ta’s, which is called
the complex conjugate representation: Clearly, if the generators Ta form an algebra with
structure constants f c

ab, then so do the generators −T ∗
a . This is of course true for any

representation. Since the Cartan generators are diagonal and real, the weights just
receive an overall minus sign, in particular, they are different. (This is in contrast to the
adjoint representation, which is isomorphic to its complex conjugate representation.) So
we have a representation, again three-dimensional, called 3, with states

〈
ν1

∣∣ =

〈
−

(
1

2
,

1

2
√

3

)∣∣∣∣ ,
〈
ν2

∣∣ =

〈
−

(
−1

2
,

1

2
√

3

)∣∣∣∣ ,
〈
ν3

∣∣ =

〈(
0,

1√
3

)∣∣∣∣ . (6.68)

The weights of the vector representation and its conjugate are depicted in Figure 6.3.

ut ut

ut

H1

H2

(−1
2
, 1

2
√

3
) (1

2
, 1

2
√

3
)

(0,− 1√
3
)

Figure 6.3: The weights of the 3 and 3 of su(3). The lines connecting the weights are
roots.

6.5 Positive and Simple Roots

For su(2) we had a notion of raising and lowering operators, and of highest weight. To
generalise that, we have to introduce an order on the space of weights. Clearly this will
not be unique, but luckily, the results will not depend on the particular ordering.

The simplest way to define an order is the following: Fix a basis Hi of Cartan
generators. In this basis, we define a weight vector ω to be positive, ω > 0, if the first
nonzero component is positive. Then an obvious order on weight space is given by

ω > µ ⇔ ω − µ is positive . (6.69)

Thus we now know what the highest weight of a representation is.
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This also applies to the roots, so we have identified the raising operators: Eα is a
raising operator if α > 0, and a lowering operator otherwise. For su(3), the positive
roots are those on the right-hand side of diagram 6.2.

We can restrict our discussion to positive roots, because the other ones are just their
negatives. But actually, we can restrict even more: Clearly, roots can be expressed as
sums of other roots. This prompts a choice of “elementary” ones:

Definition 27. A simple root is a positive root that cannot be written as a sum of
positive roots.

In other words, the simple roots are the “smallest” of the positive roots.

Simple roots have a number of important properties. In particular, they already fix
the algebra in the sense, that one can reconstruct all roots, and even the generators,
from the simple roots. We will not go into much detail about the reconstruction, but
we mention some properties that will be important.

• First, let α and β be different simple roots. Then α− β is not a root: α− β is not
zero, since the roots are different. Say it is positive, then we have α = α − β + β,
i.e. α can be written as a sum of positive roots. But α is simple, so α − β cannot
be a root.

• Second, we can apply the master formula again,

~β · ~α
~α · ~α = −1

2
(p − q) . (6.70)

q measures how often we can subtract α from β without leaving root space. But
we saw that already β − α is not a root, so q = 0 and

~β · ~α = −1

2
p ~α · ~α ≤ 0 . (6.71)

By the same argument,

~α · ~β = −1

2
p′~β · ~β ≤ 0 . (6.72)

Hence the angle between simple roots and the relative lengths are

cos θ = −
√

pp′

2
,

α2

β2
=

p′

p
. (6.73)

In particular, the angle is constrained to be 90◦ ≤ θ < 180◦. The first constraint
comes because the cosine is nonpositive, the second because the roots are positive,
so they lie in a half-space.
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• Third, simple roots are linearly independent. To see this, consider a linear combi-
nation

γ =
∑

α

cαα , (6.74)

And check whether we can find coefficients cα such that γ = 0. Since all α are
positive, the cα cannot all have the same sign. Hence we can split γ into strictly
positive and negative pieces,

γ =
∑

cα>0

cαα −
(
−

∑

cα<0

cαα

)
= µ − ν . (6.75)

Now consider the norm of γ:

γ2 = (µ − ν)2 = µ2 + ν2 − 2µ · ν . (6.76)

Clearly, µ and ν cannot vanish, so their norm is positive. However, since µ and
ν are both positive linear combinations of simple roots, their scalar product is
negative, as we have seen above. Hence, the norm of γ never vanishes, so no linear
combination of simple roots can be zero.

• What is more, the simple roots form a basis: If this was not the case, there would
be a vector ~ξ which is orthogonal to all simple roots. But it is easy to see that
any positive root can be written as a linear combination of simple roots with
non-negative integer coefficients,

γ =
∑

α simple

kαα . (6.77)

This follows by induction: It is obviously true for the simple roots themselves. Any
other positive root can be written as a sum of positive roots, hence the statement
follows. Since the roots are linearly independent, the decomposition is unique, and
we can associate to any positive root its level k =

∑
α kα.

Then we have ~ξ · ~α = 0 for all roots α, so we see that the operator ~ξ · ~H commutes
with all elements of the algebra,

[
~ξ · ~H,Hi

]
=

[
~ξ · ~H,Eα

]
= 0 . (6.78)

But this means that ~ξ · ~H is in the center of the algebra, which is trivial for a
semisimple algebra. Hence there is no such ξ, and the simple roots form a basis of
Rr. Hence, in particular, the number of simple roots is equal to the rank of the
algebra.
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• Fifth, we can find all positive roots. That is, given the simple roots, we can
determine whether a linear combination γk =

∑
kαα is a root or not. The way is

by induction over the level and using the master formula again. The key point is
that for the simple roots, i.e. those at level one, all qi = 0 since the difference of
simple roots is never a root. Hence from the master formula we can find the pi,
and thus the allowed roots on level two. Now for these roots, we by construction
know the qi, hence we again can find the pi, and continue this process until we
found all the roots, i.e. until at some level all roots have all pi = 0.

• We can even go further and reconstruct the full algebra from the simple roots:
Given a set of simple roots αi, we can find all positive roots α. Then we know
the algebra consists of the Cartan generators Hi, raising operators Eα and low-
ering operators E−α. All commutators are now fixed as in Eq. (6.50) except for
the numbers eα,β. They are determined by considering the action of each su(2)
subalgebra

6.5.1 Example: su(3)

From Eq. (6.65), we can read off the positive roots of su(3). One of them, namely (1, 0),
is the sum of the other two, which are the simple roots, i.e. at level k = 1:

α1 =

(
1

2
,

√
3

2

)
, α2 =

(
1

2
,−

√
3

2

)
. (6.79)

To see what we can add, we use the master formula (and use that α1 and α2 have length
one). We can also save some work by remembering that 2α is never a root, so we only
have to check whether we can add α2 to α1, and we find

~α1 · ~α2 = −1

2
= −1

2
p ⇒ p = 1 . (6.80)

Hence α1 + α2 is a root, and the only one at level 2. We cannot add any more to it,
since

(
~α1 + ~α2

)
· ~α1 =

(
~α1 + ~α2

)
· ~α2 =

1

2
= −1

2
(p − q) . (6.81)

Clearly, q = 1 for both cases, so p = 0. Therefore α1, α2 and α1 + α2 are the only
positive roots of su(3).

6.5.2 Constructing the Algebra

To show that the root system contains as much information as the algebra, one should
reconstruct the algebra from the roots. We will not do this explicitly, but only sketch
the idea.
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Once we know the simple roots, we can construct all roots. In the adjoint represen-
tation, each root correspond to exactly one state. For this state, we can determine its
spin j = p+ q under the su(2) subalgebra associated to any root α, so we can determine
the action of the E± operators. Now all that is left is to find the commutators [Eα1 , Eα2 ],
which in turn is fixed by the Jacobi identity in terms of scalar products of roots.

6.6 Representations and Fundamental Weights

6.6.1 Highest Weight Construction

We will now discuss a convenient way of fixing a representation in terms of a particular
set of weight vectors. Assume a simple Lie algebra with rank r and simple roots αi.
Then we want to construct representations by some highest weight construction like we
did for su(2). Since now we can distinguish raising and lowering operators, we can define
a highest weight: A weight µ is called a highest weight if µ + α is not a weight for any
positive root α. This is equivalent to saying that

Eα |µ〉 = 0 (6.82)

for all positive roots α. Then we can obtain every state in the representation by acting
on |µ〉 with lowering operators E−α, where α is some positive root. This also shows that
in any irreducible representation, there is only one state of weight µ, because otherwise
the representation would fall apart into disjoint copies.

Actually, we don’t need all roots, but only the simple ones, because

a) the positive roots are sums of the simple ones, so µ is a highest weight exactly if
µ + αi is not a weight for all simple roots αi, and

b) all lowering operators can be expressed as commutators of those of the simple roots,
since e.g.

Eαi+αj ∼ [Eαi , Eαj ] (6.83)

Hence in the master formula, the highest weights have p = 0 for all αi,

~µ · αi

~αi · ~αi
=

1

2
qi . (6.84)

So the highest weight is determined by r integers qi ≥ 0, and in turn, every set of such
numbers determines a highest weight, i.e. every such weight can be used as a starting
point for an irreducible representation. The qi are called the Dynkin coefficients, and a
representation with this highest weight is labelled by D = (q1, . . . , qr). Hence, we can
find all representations of a given algebra just from the simple roots.
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6.6.2 Fundamental Weights

Since the Dynkin coefficients specify the representation, it is then natural to consider a
set of r special “basis” highest weights µi which satisfy

~µi · ~αj

~αj · ~αj
=

1

2
δij . (6.85)

These weights are called fundamental weights, and the representations with these highest
weights are the fundamental representations Di = (0, . . . , 0, 1, 0, . . . , 0).

Every highest weight can be expressed as an integral linear combination of the fun-
damental weights,

µ =
∑

i

qiµi . (6.86)

Hence, every representation can be obtained from a tensor product of fundamental rep-
resentations. This tensor product will in general not be irreducible, i.e. its set of weights
will contain several highest weights. We can then reconstruct the desired irreducible
representation by applying lowering operators. As long as we just care for the states,
however, we can directly work with the Dynkin labels: If we start with highest weight
with Dynkin labels qi, we can descend in direction of root αi qi times. This gives us
further states. Since we know the pi of all of these states, we can easily find the further
qi’s, and complete the full representation. As an example, we will consider su(3) again:

Example: su(3)

The simple roots of su(3) are given in Eq. (6.79). The fundamental weights are solutions
to Eq. (6.85), and are easily seen to be

µ1 =

(
1

2
,

1

2
√

3

)
, µ2 =

(
1

2
,− 1

2
√

3

)
. (6.87)

1 0

−1 1

0 − 1

Figure 6.4: Weights
of the (1, 0) repre-
sentation.

It is customary to label each weight by its q − p values, which,
for the highest weight, coincides with the Dynkin coefficients. To
distinguish this from other r-tuples, it is encloses in a box, such
that e.g. the fundamental weight µ1 corresponds to 1 0 . Each
time we subtract a simple root αj from a weight, the pi − qi values
change by

−2
~αj · ~αi

~αi · ~αi
. (6.88)

For su(3), this means that lowering by the simple roots corresponds
to subtracting the following numbers:

α1 ↔ 2 -1

α2 ↔ -1 2
(6.89)
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Let us consider the two fundamental representations. It is con-
venient to write down the scalar products involved:

~αi · ~αi = 1 , ~α1 · ~α2 = −1

2
, ~αi · ~µj =

1

2
δij . (6.90)

For the representation with Dynkin labels (1, 0), we start with weight µ1 and can descend
exactly once in direction α1 to obtain the weight -1 1 , since for the highest weight, the
Dynkin labels are just the q values. In the diagram, this is denoted by an arrow going
down and to the left. We cannot go in that direction again. For the α2 direction, we see
that q− p = 1, and that p = 0 since we arrived there by descending by α1. Hence, q = 1
and we can go in the α2 direction exactly once, arriving at 0 -1 . From this weight, we
cannot go further: For the α1 direction, we have p = 0 and q − p = 0, so q = 0, while
for α2 we have p = 1 and q − p = −1, so again q = 0. (We also knew this, because we
had q = 1 for the second weight.)

In summary, the D1 = (1, 0) representation contains the three weights µ1, µ1 − α1

and µ1 − α1 − α2, which are the weights of the vector representation (6.67). By a very
similar discussion, we can analyse the representation D2 = (0, 1). Its weight diagram is
basically the mirror image of Fig. 6.4, and it gives the complex conjugate representation
3.

1 1

−1 2 2 − 1

0 0

−2 1 1 − 2

−1 − 1

Figure 6.5: Weights of the
(1, 1) representation.

As another example, consider the representation with
Dynkin labels (1, 1). In the first step, we can go down in
both directions once. When going in the α1 direction, we
arrive at -1 2 – these are the q − p values, while the p’s
are (1, 0). So the q’s are the sum, q = q−p+p = (0, 2), and
we can go down twice in α2 direction to arrive at 1 -2 ,

whence we can finally descend to -1 -1 . The diagram is
symmetric about the vertical axis because the initial state
is invariant under interchange of the roots, and the roots
correspond to symmetric q − p’s.

Note that in between, we pass through 0 0 – this state
is orthogonal to both simple roots. Since they are a ba-
sis, this state has weight zero, and so the two states above
it have the two simple roots as weights. Hence, this rep-
resentation is actually the adjoint, and 0 0 corresponds
to the Cartan generators. This shows that a particular
weight might have several associated states. There is a
general way to determine the degeneracy of a weight from
Freudenthal’s recursion formula, which also leads to an ex-
plicit expression for the dimension of a representation given its highest weight, the Weyl
dimension formula. They are discussed e.g. in the books by Cahn or by Fuchs and
Schweigert.
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6.7 Cartan Matrix, Dynkin Diagrams

Now that we have seen that the simple roots contain all the information of the Lie
algebra, we introduce two ways of displaying the properties of simple roots: The Cartan
matrix and the Dynkin diagram. They are equivalent to each other and to the set of
simple roots in the sense that form any one one can construct the other two. However,
the Cartan matrix is more convenient for building representations, while the Dynkin
diagram clearly shows the structure of the algebra and possible subalgebras. In the
following, we again denote the simple roots by αi, where i runs from 1 to the rank r.

6.7.1 The Cartan Matrix

When building representations, we saw that the expression 6.88 is rather convenient. It
is important enough to get its own name: For a given Lie algebra of rank r, the Cartan
matrix A is an r × r matrix with entries

Aij = 2
~αi · ~αj

~αj · ~αj
. (6.91)

We immediately deduce a few properties:

1. A is invertible, since the simple roots are linearly independent.

2. The diagonal entries are Aii = 2.

3. In general, A is not symmetric due to the denominator. However, when Aij = 0,
then also Aji = 0.

4. The off-diagonal entries can only be 0,±1,±2,±3 because of Table 6.1. Further-
more, from Eq. (6.71) we see that the values cannot be positive, so they must be
0, −1, −2 or −3.

5. We deduce for the product AijAji (no sum over i, j!)

AijAji = 4
(~αi · ~αj)

2

~αi2~αj2
= 4 cos2 φ ≤ 4 . (6.92)

The inequality is strict for i 6= j because then αi and αj are linearly independent.
Hence, if Aij = −2 or Aij = −3, then Aji = −1

Each positive root defines an su(2) inside the algebra. You can think of the Cartan
matrix as telling you how the su(2)s mix, i.e. how the simple roots transform under the
other roots’ su(2)s. This is the reason why the Cartan matrix helps to construct general
representation starting from a highest weight.
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6.7.2 Dynkin Diagrams

Now we come to the other description of the algebra, this time in form of pictures. Recall
that for simple roots, the allowed angles in Table 6.1 are more restricted to be 90◦, 120◦,
135◦ or 150◦, while the relative lengths are still as in the table. We define the Dynkin
diagram of a Lie algebra by the following procedure:

0. A Dynkin diagram consists of open circles, filled circles and lines between circles.

1. For each simple root αi, draw an open circle.

2. Connect two circles with zero, one, two or three lines if the angle between the roots
is 90◦, 120◦, 135◦ or 150◦, respectively:

90◦ 120◦ 135◦ 150◦

Alternatively, the number of lines can be determined from the Cartan matrix: For
roots αi and αj, the number of lines is AijAji.

3. Roots with an angle of 135◦ or 150◦ are of different length. Fill the circle corre-
sponding to the shorter root.

Alternatively, if AijAji = 2 or AijAji = 3, fill out the circle for root αi if Aij > Aji

and αj otherwise.

For example, we have seen that su(2) has rank one, and thus its Dynkin diagram is

very simple: su(2) ∼= . For su(3), we have two simple roots with an angle of 120◦, so
su(3) ∼= .

6.8 Classification of Simple Lie Algebras

The Dynkin diagram allows us to classify all possible simple Lie algebras by translating
the algebraic properties into geometrical and diagrammatical ones.

6.8.1 Π Systems

Let us consider the conditions a set of vectors {αi} needs to satisfy in order to qualify
as a set of roots. It turns out the following conditions are sufficient:

1. The αi are linearly independent.

2. For two distinct vectors α and β, 2α · β/α2 is a nonpositive integer.

3. The set of vectors is indecomposable, i.e. it cannot be separated into two orthogonal
subsets.
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If these conditions are satisfied, the set of vectors is called a Π-system. Recall that from
condition 2. you can deduce that the nonpositive integer is actually 0, −1, −2 or −3,
and that the connection between the angle and the relative length still holds. The third
condition ensures that the algebra is simple – if the set of roots splits into orthogonal
pairs, you can show that the algebra splits into invariant subalgebras, so it is semisimple
and generates a direct product group.

Given a Π system, we can draw the Dynkin diagram – they are equivalent (up to a
normalisation). What do the conditions mean in terms of the diagram? In other words,
what are acceptable Dynkin diagrams? The third condition implies that the diagram
cannot be separated into two diagrams without cutting a line. The second condition is
automatically satisfied since the number of lines between two circles is just minus the
nonnegative integer. The only condition that requires some work is the first, and it will
be rather restrictive.

6.8.2 Constraints

One immediate consequence of the conditions for a Π system is that any connected subset
of a Π system is again a valid Π system. This will turn out to be very important, because
everything we find for Dynkin diagrams with few nodes carries over to all subdiagrams
of larger ones. Hence we will be able to exclude a huge number of prospective diagrams
because they contain non-admissible subdiagrams.

Let us first find the allowed diagrams for one to three nodes:

i. For one vector, there obviously is one diagram:

ii. For two vectors, there are three possible diagrams: , , and
.

iii. For three vectors, linear independence kicks in the first time: Three vectors are
independent unless they lie in a plane, in which case the sum of angles between
them is equal to 360◦. So the allowed diagrams cannot have three single lines, or
two double lines, or one single and one triple line. Furthermore, if the sum of the
angles is larger than 360◦, we can switch to some opposite angle to get a sum smaller
than 360◦. Hence the only allowed ones are and

In particular, the argument implies that in a three-vector diagram there can be no triple
line. Since a connected subdiagram is again a valid diagram, we see that no diagram
with three or more nodes can contain a triple line, so is the only one containing
a triple line.

Next, there are two ways how we can form a new diagram from a given one, shrinking
lines and collapsing branches:
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1. If this

A B
α β

is a valid diagram (where A and B are arbitrary subdiagrams), then so is this:

A B

α + β

2. If this

A
γ

α

β

is a valid diagram, then so is this:

A
γ

α + β or 1
2
(α + β)

For the proof, we have to check that the reduced system again satisfies the properties
of a Π system. Clearly, conditions 1 and 3 are still satisfied, so we just have to check
condition 2:

1. In the first case, α, β and α + β have the same length (since cos 120◦ = −1
2
).

Furthermore, there is no vector which is connected to both α and β, so any vector
γ ∈ A is orthogonal to β, and any γ′ ∈ B is orthogonal to α. Hence

γ · (α + β) = γ · α and γ′ · (α + β) = γ · β . (6.93)

So the set A∪B∪{α + β} satisfies all the axioms for a Π system if A∪B∪{α, β}
does.

2. We see that α, β and γ have the same length, and that α · β = 0, while α · γ =
γ · β = −1

2
α2. Then (α + β)2 = 2α2, and we have that

2
γ · (α + β)

γ2
= −2 ,

2
γ · (α + β)

(α + β)2 = −1 .

(6.94)
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Hence A∪{γ, α + β} is a Π system if A∪{γ, α, β} is. Here γ is the shorter root, so
in the associated diagram, its node should be black. A similar conclusion applies
to the set A ∪

{
γ, 1

2
(α + β)

}
– here the new root is the blackened one.

From this follow a few corollaries:

1. No diagram contains more that one double line: Since there can be no triple lines
(for rank r > 2), the diagram contains only single and double lines. If there was
more than one double line, we could shrink away the single lines and arrive at the
three-vector subsystem , which is not a valid diagram.

2. No diagram contains a closed loop: That could be shrunk to a closed loop of three
vectors, which again is not allowed.

3. Any branch point is of the form of three single lines out of one node,

. If there were more lines, or a double line, we could again collapse the
branch to .

4. No diagram contains two branch points.

5. No diagram contains both a branch point and a double line.

Finally, we can exclude a number of individual diagrams: No Π-system can contain
any of the following diagrams:

•

•

•

•
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This follows because the vectors would not be linearly independent – you can either find
linear combinations that vanish (this is possible because you know all scalar products
of the vectors, up to some overall length), or you can check that the Cartan matrix has
zero determinant. (This holds independently of the relative lengths in the last diagram).
Hence we also see that if there is a double line or a branch point, they need to be basically
at the end of the diagram, except for diagrams with only very few nodes.

Now we have arrived at the classification theorem of simple Lie algebras: Any simple
Lie algebra must either belong to one of four infinite families, which are called An to
Dn, or one of five exceptional Lie algebras, G2, F4, E6, E7 or E8. The Dynkin diagrams
and the names of the algebras are (where An contains n nodes etc., and the black nodes
correspond to shorter roots):

• An:

• Bn:

• Cn:

• Dn:

• G2 :

• F4:

• E6:

• E7:

• E8:

Note that for low enough rank, there are some redundancies. There is only one rank-
one algebra, su(2), so A1 = B1 = C1. In rank two, we see that B2 = C2. For the Dn

series, you remove nodes from the left, so D2 = A1 × A1 and D3 = A3. However, these
equivalences are accidental and do not continue for higher rank.

As usual, we have discussed complex Lie algebras. All the algebras have various real
forms. In particular, the infinite families An to Dn have as their compact real form the
Lie algebras of the classical groups SU(n + 1), SO(2n + 1), Sp(2n) and SO(2n). We
will discuss these in the next section.

103



6.9 The Dynkin Diagrams of the Classical Groups

The Lie groups SO(n), SU(n) and Sp(n) are called classical groups. For SO(n) and
SU(n) we have discussed the Lie algebras in Section 5.4.2. Here we will go into more
detail and find the Dynkin diagrams. We will use the physicists’ convention and use
Hermitean matrices as the elements of the algebras.

To find the simple roots, it will suffice to find a convenient explicit form of the Cartan
elements, because then we know the weights of the defining representation, and the
differences of the weights will be the roots. The Cartan elements must be Hermitean,
and (almost) diagonal, so they can be found rather straightforwardly. We will only
present the results.

6.9.1 su(n)

The Lie algebra su(n) consists of n×n traceless Hermitean matrices. Its (real) dimension
is n2 − 1. To find the rank, use that we can simultaneously diagonalise all elements of
the Cartan subalgebra, and their diagonal elements are real. Hence the rank is the
dimension of real traceless n × n matrices, which is n − 1.

Cartan Generators

The usual convention is to normalise the generators Ta such that tr TaTb = 1
2
δab. The

Cartan elements Hm for m = 1, . . . , n − 1 are conveniently chosen diagonal,

Hm =
1√

2m (m + 1)




1
. . .

1





m times

−m
0

. . .

0




. (6.95)

The explicit components are

(Hm)ij =
1√

2m (m + 1)

(
m∑

k=1

δik δjk − m δim+1 δjm+1

)
. (6.96)

As basis states of the defining representation we can choose the standard basis ei of
Cn. The weights are in general

ωi = ((H1)ii , (H2)ii , . . . , (Hn−1)ii) . (6.97)
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Explicitly, we have

ω1 =

(
1
2
, 1

2
√

3
, . . . , 1√

2m (m+1)
, . . . , 1√

2n (n−1)

)
, (6.98a)

ω2 =

(
−1

2
, 1

2
√

3
, . . . , 1√

2m (m+1)
, . . . , 1√

2n (n−1)

)
, (6.98b)

ω3 =

(
0,− 1√

3
, 1

2
√

6
, . . . , 1√

2m (m+1)
, . . . , 1√

2n (n−1)

)
, (6.98c)

...

ωm+1 =

(
0, . . . , 0︸ ︷︷ ︸
m−1 times

,− m√
2m (m+1)

, . . . , 1√
2n (n−1)

)
, (6.98d)

...

ωn =

(
0, . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0, −n+1√

2n (n−1)

)
(6.98e)

You can check that the weights have the same length and the same scalar product,

(
~ωi

)2
=

n − 1

2n
, ~ωi · ~ωj = − 1

2n
. (6.99)

Furthermore, the tracelessness of the generators leads to

∑

i

ωi = 0 . (6.100)

This was to be expected – we have n weights, but they have only n − 1 components.
This choice of Cartan generators and weights has the nice feature that we very easily

get the positive and simple roots, but we unfortunately have to define a nonstandard
ordering: A weight is positive if the last nonvanishing component is positive. Using this
ordering prescription, the weights are already ordered,

ω1 > ω2 > · · · > ωn . (6.101)

Roots

The roots are the differences of weights, ωi −ωj. Due to the ordering, the positive roots
are ωi − ωj for i < j. If there is a k such that i < k < j, we have

ωi − ωj = ωi − ωk

︸ ︷︷ ︸
positive

+ ωk − ωj

︸ ︷︷ ︸
positive

, (6.102)

and thus ωi − ωj is not simple. So the simple roots finally are

αi = ωi − ωi+1 . (6.103)
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From Eq. (6.99), we can deduce

~αi · ~αi = 1 , ~αi · ~αi+1 = −1

2
, ~αi · ~αj = 0 for i 6= j, j ± 1 . (6.104)

In other words, all roots have the same length, neighbouring roots enclose an angle of
120◦, and other roots are orthogonal. Hence the Dynkin diagram for su(n) is An−1,

su(n) ∼= α1 α2 αn−2 αn−1

. (6.105)

Equivalently, the Cartan matrix is

Asu(n) =




2 −1 0
−1 2 −1
0 −1 2

. . .

2 −1
−1 2




. (6.106)

Fundamental Weights

The fundamental weights µi have to satisfy (since ~αi · ~αi = 1)

~αi · ~µj =
1

2
δij (6.107)

A straightforward calculation shows they are

µ1 = ω1 ,

µ2 = ω1 + ω2 ,

...

µn−1 = ω1 + ω2 + · · · + ωn−1

(6.108)

Due to Eq. (6.100), the last fundamental weight is µn−1 = −ωn. Note that lowest weight
of the µ1 representation is

µ1 − α1 − · · · − αn−1 = ωn , (6.109)

i.e. minus the highest weight of D(µn−1). Hence, the representations are conjugate to
each other, D(µ1) = D(µn−1).

So now we can in principle determine any representation of su(n) from its Dynkin
coefficients as a product of the fundamental representations. Actually, for su(n) there
is one more simplification: We only really need the defining representation, which is
usually denoted by its dimension as n. To add some confusion, the defining rerpesen-
tation is often called the fundamental representation, amd its conjugate is called the
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antifundamental. We will not follow this usage. This comes about because all other rep-
resentation can be obtained from tensor products of this representation with itself. To
see this, recall that a tensor product of representations is in general reducible. One irre-
ducible piece for the tensor product of a representation with itself is the antisymmetric
combination: Label the states in the defining representation by |n, i〉 with i = 1, . . . , n.
Then the general tensor product is spanned by states |n, i〉 ⊗ |n, j〉. The antisymmetric
piece is

(n ⊗ n)a =
{
Aij |n, i〉 ⊗ |n, j〉

}
(6.110)

where Aij = −Aji. Since weights of tensor products add, the highest weight is the sum
of the highest and second-highest weights of the |n〉, which are µ1 and µ1 − α1. Hence
the highest weight of the antisymmetric tensor product is

µ1 +
(
µ1 − α1

)
= ω1 + ω2 = µ2 . (6.111)

Hence (since the highest weight is unique), this is precisely the second fundamental
representation! This pattern continues, so that we have

D
(
µk

)
= (n ⊗ · · · ⊗ n︸ ︷︷ ︸

k times

)a . (6.112)

In particular, its dimension is

dim D
(
µk

)
=

(
n

k

)
(6.113)

In Section 6.11 we will discuss how to use Young tableaux to find representations of
su(n).

6.9.2 so(n)

For so(n), we can go through a similar analysis: The algebra elements are the imaginary
antisymmetric n×n matrices. Hence we cannot choose diagonal Cartan generators, but
we can come close: We choose them block-diagonal with 2 × 2 blocks, of which all but
one are zero (if n is odd, there is one more row and column of zeroes):

Hm =




02

. . .

02

σ2

02

. . .

02




.

position m

(6.114)
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Explicitly, the components are

(Hm)ij = −i (δi,2m−1δj,2m − δi,2mδj,2m−1) . (6.115)

They still commute, and there are no more commuting algebra elements. So the rank
of so(n) is n/2 if n is even and (n − 1)/2 if n is odd. We will denote the rank by
k. The eigenvectors of the Hm are not the standard basis of Cn, but are of the form
(0, . . . , 0, 1,±i, 0, . . . , 0), and the associated eigenvalues are ±1. Hence the weights of
the defining representation are k-component vectors commonly denoted ei (because they
look like the standard basis of Ck):

±ei = (0, . . . , 0,±1, 0, . . . , 0)

position i

(6.116)

Clearly they satisfy ~ei ·~ej = δij. Also, we see that for every weight, its negative is also a
weight, so the defining representation of so(n) is self-conjugate. Here we can return to
our old definition of positivity and call the ei positive and −ei negative weights. Note
that for odd n, the last row and column of the Cartan elements are zero, so that the
n-component vector (0, . . . , 0, 1) has weight zero, which was not a weight for even n.
This means that to find the roots, one has to distinguish even and odd n.

Roots of so(2k)

Let us first consider even n = 2k. Then all weights are of the form ±ei, and their
differences, i.e. the roots, are of the form

±ei ∓ ej , i 6= j . (6.117)

The constraint i 6= j comes about because if i = j, the root would either be zero, or the
corresponding generator would map the state with weight ei to the one with −ei. But
this would mean that the operator would itself be block-diagonal and antisymmetric, and
you can convince yourself that this operator does not exist. Hence there are 2× 2×

(
k
2

)

roots. Note that this is consistent with the dimension of so(2k):

dim (so(2k)) =
2k(2k − 1)

2
= 2 × 2 ×

(
k

2

)
+ k . (6.118)

Our (traditional first-component based) definition of positivity implies that the positive
roots are ei ± ej for i < j (this restriction avoids double-counting for the plus sign). The
simple roots are then, by a similar argument as above, the differences of neighbouring
weights, and the sum of the two last ones:

αi = ei − ei+1 , i = 1, . . . , k − 1 , αk = ek−1 + ek . (6.119)

To draw the Dynkin diagram, we compute the scalar products. The nonvanishing
ones are (again with i = 1, . . . , k − 1)

~αi · ~αi = ~αk · ~αk = 2 , ~αi−1 · ~αi = −1 , ~αk−2 · ~αk = −1 . (6.120)
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Hence the diagram is Dk,

so(2k) ∼= α1 α2 αk−3 αk−2 αk

αk−1

. (6.121)

The Cartan matrix is

Aso(2k) =




2 −1 0
−1 2 −1
0 −1 2

. . .

2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2




. (6.122)

Roots of so(2k + 1)

For odd n = 2k + 1, we have to modify the analysis a bit because now also zero is
a weight. Hence we get a new set of roots, namely all ±ei. This again matches the
dimension, since dim(so(2k + 1)) − dim(so(2k)) = 2k. Hence, αk is not anymore a
simple root, and its place is taken by αk = ek. This root is shorter than the other ones,
and its only nonvanishing scalar product is

~αk−1 · ~αk = −1 . (6.123)

Hence the Dynkin diagram becomes that of Bk,

so(2k + 1) =
α1 α2 αk−2 αk−1 αk

. (6.124)

Here the Cartan matrix is not symmetric,

Aso(2k+1) =




2 −1 0
−1 2 −1
0 −1 2

. . .

2 −2
−1 2




. (6.125)
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Fundamental Weights of so(2k)

The fundamental weights can be constructed in the same way as for su(n), except for
the last two (since the last root is different). We find the fundamental weights

µ1 = e1 ,

µ2 = e1 + e2 ,

...

µk−2 = e1 + · · · + ek−2 ,

µk−1 =
1

2

(
e1 + · · · + ek−1 − ek

)
,

µk =
1

2

(
e1 + · · · + ek−1 + ek

)
.

(6.126)

As for su(n), most of the fundamental representations can be obtained as antisymmetric
tensor products of the defining one, which is again denoted by its dimension as n,

D
(
µi

)
= (n ⊗ · · · ⊗ n)a , i = 1, . . . , k − 2 . (6.127)

The last two weights are different – the associated representations are called spinor
representations. They cannot be obtained from the defining representation, as is signified
by the factor 1

2
, which means they cannot arise as sums of the other weights. Their

dimension can be obtained easily, because the weights of the spinors are all of the form

(
±1

2
,±1

2
, . . . ,±1

2

)
. (6.128)

You can convince yourself that all these weights indeed appear. The two representations
are distinguished by the fact that they have either an even or an odd number of minus
signs, hence their dimensions are 2k−1.

As the weights are the eigenvalues of the Cartan generators, we also see that group
elements

g = exp(iφiHi) , (6.129)

have a periodicity of φ ∼ φ + 4π when acting on spinor representations, while the
periodicity is φ ∼ φ+2π when acting on the non-spinorial representations. Hence we see
that the spinor representations are the analogues of the half-integral representations of
su(2) – they are not proper representations of the group SO(2k), but only of its double
cover group which is usually denoted Spin(2k). (This is also the universal covering
group.) For low enough dimensions, the Spin(n) groups accidentally are given by some
classical groups, as e.g. Spin(3) = SU(2) and Spin(4) = SU(2) × SU(2), but this does
not persist in higher dimension.
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Fundamental Weights of so(2k + 1)

For odd dimensions, the analysis is slightly modified again. We find the fundamental
weights

µ1 = e1 ,

µ2 = e1 + e2 ,

...

µk−1 = e1 + · · · + ek−1 ,

µk =
1

2

(
e1 + · · · + ek

)
.

(6.130)

Hence, we see that so(2k+1) has one fundamental spinorial representation, which again
is only a proper representation of the double cover group Spin(2k + 1). The dimension
of the spinor is 2k.

There is a systematic way to work with spinor representations using what is called a
Clifford algebra. This is what you use in particle physics under the name of γ matrices,
and we will very briefly discuss that in Section 6.13.

6.9.3 sp(2n)

The last family of classical groups are the symplectic groups Sp(2n). They are important
in classical mechanics, but not so much in particle physics, so we will be rather brief.
They are defined as those 2n× 2n unitary matrices M which preserve an antisymmetric
scalar product,

MT JM = J where J =

(
0 1n

−1n 0

)
, . (6.131)

Note that there is some confusion in the notation: Sometimes this is called USp(2n),
and Sp(2n) is defined without the requirement of unitarity. Also, some people write
Sp(2n) as Sp(n).

Clearly the matrices are unitary and have M have det M = ±1. Hence the algebra
of Sp(2n) consists of Hermitean traceless matrices m which additionally satisfy

mT J + Jm = 0 . (6.132)

A convenient parameterisation is in terms of the Pauli matrices

m = 1⊗ iA + σi ⊗ Si (6.133)

with A being real and antisymmetric and Si real and symmetric. In particular, trA = 0.
Note that there is an su(n) subalgebra spanned by

1⊗ iA + σ3 ⊗ S3 (6.134)
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with traceless S3. This corresponds to the SU(n) subgroup

M =

(
U 0
0 U∗

)
. (6.135)

It is convenient to choose the Cartan generators as the diagonal matrices. Then the
n − 1 Cartan generators of the su(n) subalgebra are automatically embedded into in the
Cartan algebra of sp(n) as

Hm =
1√
2

(
H

su(n)
m 0

0 −H
su(n)
m

)
, m = 1, . . . , n − 1 . (6.136)

We have included the prefactor to keep the normalisation trHmHn = 1
2
δmn. There is

only one remaining diagonal matrix, namely the one where we drop the tracelessness
condition:

Hn =
1

2
√

n
σ3 ⊗ 1 . (6.137)

Thus, the rank of sp(2n) is n.
Hence the defining representation has weights which are combinations of su(n)

weights ωi and the weight with regard to Hn,

µi =

(
1√
2

ωi,
1

2
√

n

)
(6.138)

and their negatives. So we can find the roots as differences of weights in a manner similar
to the su(n) case,

αi = ei − ei+1 =
1√
2
αi

su(n) , (6.139)

for i = 1, . . . , n− 1. Note that now the length of the roots is αi ·αi = 1
2
. The last simple

root is

αn = ei −
(
−ei

)
, (6.140)

which has length one. The angles between the first n − 1 roots are as for su(n), while
the last root has scalar products

αn · αi = 0 , i = 1, . . . , n − 2 , αn · αn−1 = −1

2
. (6.141)

Hence the last two roots enclose an angle of 135◦, and the Dynkin diagram is Cn,

sp(2n) ∼= α1 α2 αn−2 αn−1 αn (6.142)
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The diagram is basically the “mirror” of the one for so(2k + 1), and the Cartan matrix
is simply the transpose:

Asp(2n) =




2 −1 0
−1 2 −1
0 −1 2

. . .

2 −1
−2 2




. (6.143)

6.10 A Note on Complex Representations

At this point we can briefly discuss the issue of complex representations. All of the
following discussion applies to the compact real form of the Lie algebras. By complex
representations we mean representations that are not equivalent to their complex con-
jugates. If they are equivalent, i.e. if there is a matrix R such that

RTaR
−1 = −T ∗

a , (6.144)

we call the representation real.
Note that we are a bit sloppy here: In mathematical terms, this requirement lumps

together “real” and “quaternionic” or “pseudoreal” representations. To understand the
difference, it is instructive to consider representations of the group instead of the algebra.
The group elements are of the form

g = eiφaTa , (6.145)

and clearly the matrix R generates a similarity transformation that takes g to its complex
conjugate,

RgR−1 = eiφaRTaR−1

= e−iφaT ∗
a =

(
eiφaTa

)∗
. (6.146)

Hence, if there is such an R, the representation is equivalent to its complex conjugate.
However, it might still be made of complex matrices – an obvious example is the defining
representations of SU(2), for which σ2 is such an R, but which we cannot take real,
because then we would end up with the group U(1). Representations with this property
are called pseudoreal. A properly real representation is one which can be brought to a
purely real form – then we can restrict its action to a real vector space, and this forms
a proper real representation. Transferred to the algebra this means that a properly real
representation is one which can be brought into purely imaginary form, and a pseudoreal
representation is one for which this is not true, but for which an R as above still exists.

Complex conjugation is an algebra automorphism of order two (conjugating twice
brings you back to the original representation), and it can be an outer or inner au-
tomorphism. If it is an inner automorphism, the representation and its conjugate are
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equivalent, and in particular the Dynkin diagrams are unchanged. An outer automor-
phism, on the other hand, brings you to a non-equivalent representation, and it must be
visible as an order-two symmetry of the Dynkin diagram.

We can analyse the Dynkin diagrams of the classical and exceptional algebras to
look for possible such symmetries, which indicate that the corresponding algebra might
have complex representations. For example, the An family of diagrams has a reflection
symmetry,

, (6.147)

which maps α1 ↔ αn, α2 ↔ αn−1 and so on. This inverts the Dynkin labels of any
representation, so we have

(q1, . . . , qn) = (qn, . . . , q1) . (6.148)

Hence for su(n), a representation is real if its Dynkin labels are invariant under this
identification. (Indeed one can show that this automorphism is the complex conjuga-
tion.)

For so(2k) or Dk, there also is such a symmetry, which only interchanges the last
two roots:

, (6.149)

Hence, also the last two Dynkin labels are interchanged. This matches with what we
found before: The defining representation is real, and so are its tensor products, which
all have Dynkin labels (q1, . . . , qk−3, 0, 0). The spinor representations, on the other hand,
are mapped into each other. However, this automorphism is not necessarily the complex
conjugation – it is for so(4m + 2), where the spinors are conjugate to each other, but it
is not for so(4m), where both spinors are self-conjugate.

On the other hand, the Bn and Cn diagrams do not have such a symmetry. Among
the exceptional groups, only E6 has a suitable reflection symmetry, so that it can (and
does) have complex representations.

Note finally that there is one example of a higher-order automorphisms, called trial-
ity: D4 (i.e. so(8)) has a Z3 symmetry rotating the nodes into each other,

. (6.150)

This symmetry interchanges the two spinor representations and the defining one, so this
tells us they are all eight-dimensional.

114



6.11 Young Tableaux for SU(n)

We will now discuss a convenient way to represent irreducible representations of su(n) by
Young tableaux. The central point is that we can write all fundamental representations
as antisymmetric tensor products of the defining representation. Since furthermore the
fundamental representations are the building blocks of all representations (via tensor
products), all representations are contained in some tensor products of the n.

We can identify the k-fold tensor product representation with the tensor components
ψi1...ik as in

|Ψ〉 = ψi1...ip |i1〉 ⊗ . . . |ip〉 , (6.151)

where we have dropped the n from the kets. The algebra element X j
i acts on the tensor

components as

ψi1...ip 7−−−−−→ ψji2...ipX i1
j + · · · + ψi1...ip−1jX

ip
j . (6.152)

(This comes about because we think of the kets |i1〉 as lower-index objects which trans-
form as |i〉 7→ X j

i |j〉, and then we can shift the action of X to the tensor components
to obtain the expression.) Hence, in particular, symmetry or antisymmetry under ex-
change of indices is preserved, and thus a p-index tensor forms a representation of the
symmetric group Sp. But we know all the irreducible representations of Sp – they are
labelled by Young tableaux. Hence we find the important conclusion that the irreducible
representations of su(n) are determined by Young tableaux!

There is one slight difference with respect to the Sp case regarding the dimensions.
This is most apparent for the totally symmetric combination with tableau · · · .
This is always one-dimensional for Sp, because the permuted objects are distinct. Here,
however, the indices can be equal, and so the totally symmetric representations have di-
mensions larger than one. For example, the totally symmetric three-index tensor of su(2)
has independent components ψ111, ψ112, ψ122 and ψ222 and is hence four-dimensional.
This is reflected in a changed hook rule. Recall that for Sp, the dimension of a repre-
sentation was d = p!/H, where H was the hook factor of the associated diagram. Here
the hook factor is the same, but the numerator is now determined in the following way:
Draw the diagram. In the upper left box, write an n (for representations of su(n). Then
increase the number in each box by one when you go right, and decrease it by one when
going down. The numerator is then the product of all these numbers.

To illustrate this, consider again su(3). The representations with one, two or three
indices, and their dimensions are:

3 d =
3

1
= 3 ,

3
2

d =
6

2
= 3 , 3 4 d =

12

2
= 6 (6.153)

3
2
1

d =
6

6
= 1 , 3 4

2
d =

24

3
= 8 , 3 4 5 d =

60

6
= 10
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We see that the 3 is the two-index antisymmetric and the adjoint is the . This
is a general feature: The (n − 1)-fold antisymmetric representation is the conjugate of
the defining representation, and the adjoint is the symmetric product of the defining
and its conjugate. Furthermore, the n index antisymmetric representation is the trivial
(singlet) one, as is obvious from symmetry. This also implies that you can erase any
columns with n boxes from a Young tableau without changing the representation.

There is a simple way to go from the Dynkin labels to the Young tableau and back:
The k-th Dynkin label is the number of columns of height k. Hence e.g. the Dynkin
labels for the (non-singlet) three-index representations of su(3) are 1 1 and 3 0 .

Finally, note that to find the conjugate representation, one simply has to take a
Dynkin diagram and complete it to a rectangle of height n. The object you have to add
is the Dynkin diagram of the conjugate representation. For example, the conjugate of

(6.154)

in su(5) is

(6.155)

because they form a rectangle together,

. (6.156)

This automatically reproduces the conjugation rule for the Dynkin labels,
(q1, . . . , qn−1) = (qn−1, . . . , qn).

6.11.1 Products of Representations

Young tableaux also provide a nice way of determining the irreducible components of
products of representations. For time reasons, here we just sketch the recipe:

1. Draw the Young tableaux of the two representations. In one of the tableaux, label
the boxes in the first row by an a, in the second row by a b and so on.

This is to avoid overcounting and to weed out tableaux that are forbidden by the
original symmetries: The product goes by stacking the boxes of one of the tableaux
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onto the other one. In this way, certain product tableaux arise several times,
and the labelling gives a method of kicking out the duplicates. Furthermore, one
possibly obtains diagrams which violate the symmetries of the original tableaux,
which are also eliminated.

Clearly, there are two choices of which diagram to label with the letters (unless
both diagrams are equal), and usually one of them is more convenient. Often, but
not always, this is the smaller one, because you have less boxes to move around.

2. Stack the a boxes onto the other diagram while keeping it a legal Young tableau,
and without putting two a’a in the same column. In particular, there should be
no columns with more that n boxes. Take the direct sum of all those diagrams.

Repeat with the b boxes on each of the diagrams thus obtained, and so on.

3. To kick out the forbidden and duplicate diagrams, read each diagram backwards,
starting with the first line (i.e. begin with the first line backwards, the second line
backwards, and so on). Delete all diagrams in which you encounter at some point
in this procedure more b’s than a’s, more c’s than b’s etc.

Now you can remove all columns of n boxes, and the remaining diagrams are the
irreducible components in the tensor product.

As an example consider the product 8 ⊗ 3 in su(3):

⊗ a a
b

=




a

a
⊕ a a


 ⊗

b

=
a b

⊕
a
b

a
⊕ a a b ⊕ a a

b
⊕

a a

b

= ⊕ ⊕

In other words, 8 ⊗ 3 = 15 ⊕ 6 ⊕ 3. Note that the dimensions match. Here this order
is simpler because at the first step there are only two possibilities.

6.12 Subalgebras

Often in physics one encounters the phenomenon of symmetry breaking – the symmetry
of a system is reduced in some state. Group-theoretically, this means that the symmetry
group G (or its algebra g) is reduced to some subgroup H (or subalgebra h). Then also
the representations of G will in general not be irreducible under the action of H, but
rather branch into several representations of H. Hence we will now analyse the possible
subalgebras of the Lie algebras we considered, and how to find the branching rules.
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Recall that a subalgebra h is a subspace of g which is closed under the Lie bracket.
In the Cartan-Weyl basis, the algebra is generated by the Cartan generators Hi and
the simple roots Eα, and there are r = rank g of each. Now a simple way to generate
a subalgebra is to simply discard one simple root Eα̂. The algebra still closes: The
Cartan generators are still diagonal, and since α̂ s simple, it will never show up in the
commutators of other roots. Of course, in this way one also looses a certain number
of other (non-simple) roots, which contain α̂ in their simple root expansion. More
importantly, the algebra is not simple anymore:

• We now have r − 1 simple roots in an r-dimensional space, so there will be a
vector ξ which is orthogonal to all simple roots, and so ~ξ · ~H is a generator which
commutes with everything, so it generates a U(1) factor.

• Even after removing ~ξ · ~H, the remaining algebra may be simple or semisimple,
that is, it may decompose into disjoint simple pieces.

Hence, this procedure generally breaks G → H ×U(1), where the rank of H is one lower
than the rank of G. This is particularly easy to see in the Dynkin diagram: Just erase
one node form the diagram of G, and what remains is the diagram of H. The Abelian
ideal is not visible in the Dynkin diagram, so one has to keep that in mind.

As an example, consider su(5). The diagram is .Removing one
of the end roots breaks SU(5) → SU(4)×U(1), removing one of the middle ones breaks
SU(5) → SU(3)×SU(2)×U(1), which is hwo one likes to break the unified gauge group
in garnd unified theories. One can explicitly embed this subalgebra in the generators of
su(5). Recall that su(n) generators are traceless Hermitean n × n matrices. Then we
can find three commuting subalgebras in su(5), generated by

(
Usu(3) 0

0 0

)
,

(
0 0
0 Usu(2)

)
,




2
2

2
−3

−3




, (6.157)

which corresopnd to su(3), su(2) and U(1), respectively. Now it is obvious how these
subalgebras act on the defining representation, which is a five-component vector: The
first three components form the defining representation of su(3) and the last two the
defining of su(2). Under the U(1), they have charge 2 and −3, respectively. (We have
not discussed representations of U(1) much, but they are simple – the group is Abelian,
so all irreducible representations are one-dimensional, and they are determined by a
“charge” q, which leads to a transformation ψ → eiqαψ under the U(1) element eiα.
Since one can rescale α, the absolute value of the charges is not unique, but their ratio
is.) This is summarised the so-called branching rule

SU(5) −−−−−→ SU(3) × SU(2) × U(1)

5 −−−−−→ (3,1)2 ⊕ (1,2)−3 .
(6.158)
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The convention is that U(1) charges are given as subscripts, while the non-Abelian
representations are denoted by their dimension. (Note that this is not necessarily unique,
because representations of different groups can have the same dimension. For example,
SU(2), SU(3), SU(4) and SU(5) all have a 10, so one has to keep in mind which group
one is talking about.) Since this is the representation all others are built out of, this in
principle fixes all branching rules of SU(5) representations. In practice, one can look up
these rules in the review by Slansky.

Now one can straightforwardly analyse all Dynkin diagrams and find out which sub-
algebras can be thus obtained. However, the semisimple piece of the resulting group
always is of lower rank. Furtehrmore, while this procedure is simple and intuitive, it
is not obvious that we find all subalgebras in this way. We will now discuss a more
genral approach. First, we define a maximal subalgebra: h is maximal if there is no
(proper) subalgebra h0 such that g ⊃ h0 ⊃ h. Hence any non-maximal subalgebra of
g is contained in some maximal one, so it suffices to study those. There are two kinds
of maximal subalgebras, which are imaginatively called regular and special : The roots
of regular subalgebras are a subset of the roots of the original algebra, while this is not
true for special subalgebras. The special ones have to be looked for case by case, while
the semismple regular ones can be found in a systematic manner, which we will now do.
The trick is to draw the extened Dynkin diagram, which is obtained by adding the most
negative root θ, i.e. the root which is smaller than all other roots, to the set of simple
roots. The most negative root has the property that θ − αi is not a root (for simple
roots αi), so the extended root system still satisfies all properties of a Π system except
for linear independence. Hence, once we erase one root from the extended diagram, we
again have a fully functional Π system determining a Lie algebra which is a maximal
regular subalgebra of the original one (except in five cases with F4, E7 and E8). One
can explictly compute the most negative root and draw the extended Dynkin diagrams,
which are:

• Ãn:
θ

• B̃n:
θ

• C̃n: θ

• D̃n:

θ

• G̃2 : θ

• F̃4: θ
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• Ẽ6:

θ

• Ẽ7:

θ

• Ẽ8:

θ

You can find all possible regular subalgebras by deleting a node from the extended
Dynkin diagram. In particular, you see that An does not have semisimple maximal
subalgebras – deleting any node gives back An. Thus the true subalgebras of An contain
a central element which generates a U(1) subgroup – this fits with the fact that An is the
lowest-dimensional simple Lie algebra of rank n. The other diagrams can be classified
accordingly. Furthermore, there are five exceptions, where the subalgebra obtained by
deleting a simple root is not maximal: Deleting the third simple root of F4, the third
simple root of E7 and the second, third or fifth simple root of E8.

It also seems odd that D̃n does not contain a double line, so you cannot reach Bn−1

as a subalgebra, while obviously SO(2k − 1) ⊂ SO(2k). However, Bn−1 is always a
special subalgebra of Dn, which is not found by this procedure.

6.13 Spinors and Clifford Algebra

We will now briefly mention a procedure to contruct the strange spinorial representations
of Bn and Dn. We already saw that they cannot be obtained as tensor products of the
defining representations. However, there is an explicit way to find the generators in this
representations via a so-called Clifford algebra.

To do so, first recall that the elements of so(n) are the imaginary antisymmetric
matrices. Hence as a basis one can choose matrices Mij which have an i at column i, row
j, and −i at column j, row i, and zeroes otherwise. Then we clearly have Mij = −Mji,
and the comutator of these generators then is

[Mij,Mkl] = −i (δikMjl − δilMjk − δjkMil + δjlMik) . (6.159)

So this is the Lie algebra we want to find a different representation of. To construct this,
we introduce a new type of algebra, the Clifford algebra. It is generated by n operators
Γi (and the unit matrix). These operators obey a “normal” associative product, so we
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can write down terms like ΓiΓj (i.e. you can think of them as matrices), but the defining
property is phrased in terms of the anticommutator :

{Γi, Γj} = ΓiΓj + ΓjΓi = 2δij1 . (6.160)

You’ll recognise this as the Euclidean version of the γµ matrices you use in particle
physics, where on the right-hand side the Kronecker δ is replaced by the Minkowski
metric ηµν . This is of course no coincidence, as the γµ matrices come in precisely when
dealing with spinors (i.e. fermion fields).

Once you have a set of such Γi on yout hands, you can immediately form generators
of the so(n) algebra by the commutator,

Σij =
i

4
[Γi, Γj] . (6.161)

You can check straighforwardly (though somewhat tediously) that the Σij indeed satisfy
the algebra (6.160). Since one can always find a representation of the Γ’s of dimension
2n/2, the Σij provide a representation of the so(n) algebra of that dimension. However,
this is not necessarily irreducible: In even dimensions, i.e. n = 2m, one can form the
operator

Γ∗ = Γ1 · · · · · Γn (6.162)

which anticommutes with all the Γi. Hence it is not proportional to the unit matrix, but
still commutes with all the Σij, so the representation is reducible. In fact, we can form
projectors P± = 1

2
(! ± Γ∗) which project onto the irreducible subspaces (of positive or

negative chirality), which are irreducible as complex representations. In odd dimensions
we can still consider Γ∗, but it is not so interesting: It commutes with all the Γi, and
hence is already proportional to the unit matrix (by a variant of Schur’s Lemma). Hence
it canot be used to form nontrivial projectors. (Again, this should be familiar to you
from particle physics – there Γ∗ it usually called γ5, and the corresponding subspaces
are the left- and right-handed spinors.) Furthermore, for some dimensions the spinor
representations are real (this is what is called a Majorana spinor). However, this reality
constraint cannot always be imposed together with the chirality constraint. A detailed
analysis of the possible spinor types is again straightforward, but tedious and we will
not go into more detail in this lecture.

6.14 Casimir Operators

As a remark, we note that in a given representation, there is a special set of operators
which commutes with all the generators of the algebra. If the algebra is semisimple,
these operators are not elements of the Lie algebra, rather tehy are constructed from
products of the generators. (Hence they are defined only in a representation, where
the product of generators is well-defined.) In fancy parlance, they are elements of the
universal enveloping algebra, which simply is the algebra generated by all generators
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under the normal matrix product, or as formal power series in the abstract case. You
know one of those operators for su(2) – the total angular momentum operator

J2 = J2
1 + J2

2 + J2
3 . (6.163)

For a semisimple algebra of rank r, there are r independent such operators. One of
them is always the generalisation of J2: Consider the Killing form gij. Since it is
nondegenerate, we can find the inverse gij which is fixed by the requirement that gijg

jk =
δk
i . With the metric gij and its inverse we can now freely rase and lower indices. Then

we define the operator

X = gjiTiTj (6.164)

and show that it commutes with all the generators:

[X,Tk] = gij [TiTj, Tk] = gij (Ti [Tj, Tk] + [Ti, Tk] Tj)

= igjif l
jkTiTl + igjif l

ikTlTi = igijf l
jk (TiTl + TlTi)

= ifjkl

(
T jT l + T lT j

)
= 0 .

(6.165)

The expression vanishes because the lower-index structure constants are completely an-
tisymmetric in their indices (cf. Eq. (6.9)) and the expression in brackets is symmetric.
Since this Casimir operator existes for all Lie algebras, it is often called the Casimir
operator.

The point of Casimir operators is that they commute with the whole algebra, and
hence with the generated group. Hence, they are constant on any irreducible represen-
tation D, and their eigenvalue c(D) can be used to distinguish representations. The
actual value of c(D) depends on the normalisation of the Casimir and the generators,
but one can convert this into a canonical form , the so-called second-order index of the
representation D, by suitably normalising:

ID =
dim(D)

dim(g)
c(D) (6.166)

This is a quantity often encountered in loop calculations in QFT, and e.g. in the β
functions that determine the running of the gauge couplings.

The other Casimir operators are not found as easily. In particular, they are poly-
nomials of higher order in the generators (and can be chosen homogeneous). For the
allowed Lie algebras they have the following orders:

An 2, . . . , n + 1
Bn, Cn 2, 4, . . . , 2n

Dn 2, 4, . . . , 2n − 2, n
G2 2, 6
F4 2, 6, 8, 12
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30

(6.167)
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For the An series, there is a easy way to find the third-order Casimir: It is given by

X3 = dabcTaTbTc , (6.168)

where

dabc = tr ({Ta, Tb}Tc) . (6.169)

This is totaly symmetric in its indices. The tensor dabc is a invariant tensor, i.e. it does
not change under the action of the Lie algebra, and it also has certain importance in
particle physics (in four dimensions), because it measures the so-called anomalies, which
need to vanish.

6.15 Summary

• Lie algebras always act on themselves by commutation – this is the adjoint repre-
sentation.

• There is a special basis for the (complexified) Lie algebra, the Cartan–Weyl basis,
in which the algebra is split into the Cartan generators and the roots. This is
a generalisation of the su(2) algebra, such that the Cartan generators are the
analogues of J3 in that their eigenvalues label the states, and the roots correspond
to the raising and lowering operators.

• In a general representation, the eigenvalues of the Cartan generators are called
weights. Every representation is uniquely determined by its highest weight, and
can be explicitly constructed by the highest weight procedure.

• The roots are the weights in the adjoint representation. There is a special set of
roots, the simple roots, from which the whole algebra can be reconstructed.

• The geometry of the simple roots is very constrained, in particular by the master
formula. This allows for a complete classification of all possible simple Lie algebras:
There are four infinite families and five exceptional cases.

• The infinite families correspond to the classical groups SU(n), SO(n) and Sp(2n).
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