Anomaly Cancellation in 6D Sugra from the Heterotic String

Christoph Lüdeling

ITP, Universität Heidelberg

[W. Buchmüller, CL, J. Schmidt, in progress]

Beyond the Standard Model Bad Honnef March 12, 2007

- **3** Model: Bulk Anomalies
- **4** Model: Brane Anomalies
- **5** Conclusion and Outlook

< 🗇 →

- We consider a 6D supergravity theory obtained from the E₈ × E₈ heterotic string compactified on an anisotropic T⁶/ℤ₆ orbifold [Buchmüller et al. 06]
- 4D limit is known, gives the MSSM spectrum
- Compactification proceeds in two steps:
 - A First, compactify four dimensions on T^4/\mathbb{Z}_3 and go to the 6D limit: Only zero modes and localised fields remain, all effectively bulk fields
 - B Compactify the remaining two dimensions on T^2/\mathbb{Z}_2 : Heterotic string determines the localised fields (first, third and fifth twisted sector)
- Here: Study anomaly cancellation in the 6D theory (bulk (A) and branes (B))

3 Model: Bulk Anomalies

4 Model: Brane Anomalies

(5) Conclusion and Outlook

< 17 >

Anomalies

- Anomalies: Classical symmetry not preserved in quantised theory
- OK for global symmetries, anomalies lead to distinct predictions (e.g. for $\pi\to\gamma\gamma)$
- Anomalies are fatal for gauge symmetries: Effective action Γ actually is not gauge invariant,

$$\mathcal{A}(\Lambda) = \delta_{\Lambda} \Gamma \neq 0$$

- Here gauge symmetries include local Lorentz transformations (equivalent to coordinate transformations) \rightsquigarrow gravitational anomalies.
- Group structure of gauge transformations induces the Wess–Zumino consistency condition

$$[\delta_{\Lambda_1}, \delta_{\Lambda_2}] \Gamma = \delta_{[\Lambda_1, \Lambda_2]} \Gamma \implies \delta_{\Lambda_1} \mathcal{A}(\Lambda_2) - \delta_{\Lambda_2} \mathcal{A}(\Lambda_1) = \mathcal{A}([\Lambda_1, \Lambda_2])$$

< A I

- Wess-Zumino condition is solved by descent equations:
 - Start from a closed and gauge invariant (D + 2)-form I_{D+2} which is a polynomial in the gauge and gravitational field strengths $R = d\Omega + \Omega^2$ and $F = dA + A^2$ (where Ω and A are spin and gauge connection one-forms)
 - Since I_{D+2} is closed, it (locally) defines a Chern–Simons form via $I_{D+2} = dI_{D+1}^{(0)}$
 - The gauge variation of I_{D+1} is again closed, hence $\delta I_{D+1}^{(0)} = dI_D^{(1)}$
 - The anomaly defined as

$$\mathcal{A} = \int I_D^{(1)}$$

automatically satisfies the WZ consistency condition

• For anomaly cancellation, it is most convienient to analyse the anomaly polynomial I_{D+2} instead of A itself

Contributions

- Only chiral fields contribute, so anomalies only occur in even dimensions
- Pure gravitational anomalies are only possible in D = 4n + 2, because in $D = 4n \ CPT$ ensures equal numbers of right- and left-handed fields
- Fields of different chirality contribute with opposite signs
- In 6D, the anomaly polynomial is an 8-form and receives various contributions: [Erler 93]
 - Gravitino (left-handed) and dilatino (right-handed) are gauge singlets and thus only contribute to gravitational anomalies $\sim \operatorname{tr} R^4$, $\sim (\operatorname{tr} R^2)^2$
 - Gauginos (left-handed) and hypermultiplet fermions (right-handed) also contribute to gauge anomalies $\sim \text{tr } F^4$, $\sim \text{tr } F^2 \text{ tr } F'^2$, and mixed gauge–gravity anomalies $\sim \text{tr } R^2 \text{ tr } F^2$
 - Antisymmetric tensors with (anti)selfduality conditions also induce anomalies. However, the model contains one self-dual and one anti-self-dual tensor, so their effects cancel.

< 🗇 ▶

• Certain anomalies can be cancelled by the Green–Schwarz mechanism: Anomaly polynomial must be reducible,

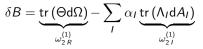
$$I_{D+2} = X_4 Y_{D-2} \,,$$

where X_4 and Y_{D-2} are both closed and gauge invariant

- If the anomaly is reducible, one can exploit the peculiar transformation properties of antisymmetric tensor fields to introduce new terms in the Lagrangean whose gauge variation cancels the anomaly.
- In the heterotic theory, we only have the NS two-form field B_2 , so the X_4 in the factorisation must be of a special form related to the transformation of B_2

Green–Schwarz Mechanism: B-Field

 B_2 transforms under local Lorentz and gauge transformations as (I labels gauge group factors, $G = \prod_I G_I$)



Here Θ and Λ_I are the transformation parameters. The α_I are determined by the gauge groups: $\alpha_{SU(N)} = 2$, $\alpha_{SO(N)} = 1$.

Crucial point: The 2-forms $\omega_{2R}^{(1)}$ and $\omega_{2I}^{(1)}$ can be obtained from tr R^2 and tr F_I^2 via the descent equations, so δB_2 can also be written as a descent of a closed and gauge invariant 4-form,

$$\delta B_2 = \text{descent of } \left(\operatorname{tr} R^2 - \sum_I \alpha_I \operatorname{tr} F_I^2 \right) \stackrel{!}{=} X_4 \,.$$

This can be used to cancel anomalies if X_4 appears in the factorisation of the anomaly polynomial

$$I_{D+2} = X_4 Y_{D-2} \, .$$

3 Model: Bulk Anomalies

- 4 Model: Brane Anomalies
- **(5)** Conclusion and Outlook

< 67 →

Model A: Field content

Gauge Group: $SU(6) \times U(1)^3 \times \left[SU(3) \times SO(8) \times U(1)^2\right]$

Sector	Multiplet	Representation	#
Gravity		Graviton & Tensor	
	Hyper		2
Untwisted	Vector	(35 ; 1, 1)	35
		(1; 8 , 1)	8
		(1; 1, 28)	28
		5 imes(1;1,1)	5
Untwisted	Hyper	(20 ; 1, 1)	20
		$(1;1,8)+(1;1,8_s)+(1;1,8_c)$	24
		4 imes(1;1,1)	4
Twisted	Hyper	$9 imes(6;1,1)+9 imes(\mathbf{ar{6}};1,1)$	108
		$9 \times (1; 3, 1) + 9 \times (1; \mathbf{\overline{3}}, 1)$	54
		$3 \times (1; 1, 8) + 3 \times (1; 1, 8_s) + 3 \times (1; 1, 8_c)$	72
		36 imes(1;1,1)	36
	•	# (Vector Multiplets)	76
		# (Hypermultiplets)	320

GS mechanism can only cancel reducible anomalies. Some terms cannot be reducible, so their coefficients have to vanish:

• \sim tr R^4 : This term imposes the condition

(hypermultiplets) - # (vector multiplets) = 244

- ~ tr F_I⁴: Relevant for non-Abelian groups with fourth-order Casimir, gives constraints on number and representations of matter multiplets: The hypermultiplet fermions have to cancel the gaugino contribution
- ~ tr $F_I^3 F_{U(1)}$: Involves also U(1) charges of hypermultiplets

Indeed, all irreducible terms cancel.

The remaining anomaly polynomial is reducible: (*A*: non-Abelian factors; u, v, \ldots : U(1)'s)

$$\begin{split} I_8 &\propto \left(\mathrm{tr} \, R^2 \right)^2 + \frac{1}{6} \left(\mathrm{tr} \, R^2 \right) \left(\sum_A m_A \, \mathrm{tr} \, F_A^2 - \sum_{u,v} m_{uv} F_u F_v \right) \\ &+ 4 \sum_{A,u,v} d_{A\,uv} \left(\mathrm{tr} \, F_A^2 \right) F_u F_v + \sum_{u,v,w,x} h_{uvwx} F_u F_v F_w F_x \\ &= \left[\mathrm{tr} \, R^2 - 2 \, \mathrm{tr} \, F_{SU(6)}^2 - 2 \, \mathrm{tr} \, F_{SU(3)}^2 - \mathrm{tr} \, F_{SO(8)}^2 - 2 \sum_u F_u^2 \right] \\ &\times \left[\mathrm{tr} \, R^2 - \sum_{u,v} \beta_{uv} F_u F_v \right] \\ &= X_4 \, Y_4 \end{split}$$

So all bulk anomalies can be cancelled!

3 Model: Bulk Anomalies

4 Model: Brane Anomalies

5 Conclusion and Outlook

< 67 →

- Up to now, we considered anomalies in the 6D effective theory of a compactification on T⁴/ℤ₂ (step A)
- Now step B: we further compactify on a T²/ℤ₂: Four fixed points(≡ branes), one Wilson line
 → two pairs of equivalent fixed points, labelled by n₂ = 0, 1
- Bulk fields may survive the orbifold projection at $n_2 = 0$, $n_2 = 1$ or both; only those surviving at both have zero modes
- States at the fixed points are determined by string theory (i.e., the twisted sectors)
- $\Rightarrow\,$ In the orbifold theory, there can be anomalies in the bulk and localised at the fixed points.
 - In the 4D limit, anomalies reduce to those of zero modes and all localised fields.

Brane Anomalies

- Vanishing of (integrated) 4D anomaly is not sufficient, bulk and brane anomalies have to vanish separately (at each fixed point)
- Bulk anomalies vanish by Green–Schwarz mechanism (inherited from before)
- For brane anomalies, there are two contributions at a given fixed point:
 - Brane-localised fields
 - Bulk fields that survive the projection at that fixed point (i.e. not just zero modes!) these contribute with a factor ¹/₄ (four fixed points)

[Lee et al. 03, Groot Nibbelink et al. 03]

· Localised anomaly polynomial again has to factorise,

$$I_6^{(\mathrm{loc})} = X_4 Y_2^{(\mathrm{loc})}$$

with the same X_4 as before (but resticted to appropriate subgroups at the fixed point).

• If $I_6^{(loc)}$ factorises, the anomaly is cancelled by a Green–Schwarz mechanism, localised on the fixed point

Model B:Localised Fields

	$SU(5) imes U(1)^4 imes \left[SU(3) imes SO(8) imes U(1)^2 ight]$				
	surviving bulk hypermultiplets	brane hypermultiplets			
<i>n</i> ₂ = 0:	$(10; 1, 1), (\bar{10}; 1, 1)$ 10 × (F : 1, 1), 10 × (F : 1, 1)	$(10; 1, 1), (\bar{5}; 1, 1)$			
	$ \begin{array}{c} 10 \times ({\bf 5};1,1), \ 10 \times ({\bf \bar 5};1,1) \\ 9 \times (1;{\bf 3},1), \ 9 \times (1;{\bf \bar 3},1) \end{array} $	$2 \times (1; 3, 1), 2 \times (1; \mathbf{\bar{3}}, 1) (1; 1, 8_c)$			
	$12 imes\left(1;1,\hat{oldsymbol{8}} ight)$, 58 $ imes$ (1;1,1)	8 imes (1; 1, 1)			
$CU(2) \sim CU(4) \sim U(1)^4 \sim [CU(2) \sim CU(4) \sim U(1)^4]$					
	$SU(2) \times SU(4) \times U(1)^4 \times [SU(2) \times SU(4) \times U(1)^4]$				
$n_2 = 1$:	surviving bulk hypermultiplets	brane hypermultiplets			
	$(2, 4; 1, 1), (2, \overline{4}; 1, 1), (2, 6; 1, 1)$				
	$10 imes (1, 4; 1, 1), \ 10 imes (1, \mathbf{ar{4}}; 1, 1)$				
	$18 \times (2, 1; 1, 1), \ 20 \times (1, 1; \mathbf{2'}, 1)$	1)			
	$8 imes(1,1;1,4'),8 imes\left(1,1;1,ar{4}' ight)$				
	$5 \times (1, 1; 1, 6'), \ 66 \times (1, 1; 1, 1)$.)			

< 🗇 ►

Anomaly Cancellation and Anomalous U(1)'s

- No pure gravitational anomaly in 4D, so no restriction on absolute number of multiplets
- The only irreducible terms are cubic non-Abelian, $\sim {\rm tr}\,F_A^3$, which cancel at both fixed points
- Remaining anomaly polynomials factorise in the required way
- \Rightarrow Localised Green–Schwarz terms can be added to cancel these
 - Since factorisation involves a 2-form, $I_6^{(loc)} = X_4 Y_2^{(loc)}$, only U(1) anomalies are possible
 - At each fixed point, we can find one linear combination of generators to be the "anomalous U(1)", such that all other U(1)'s are anomaly free
 - However, anomalus U(1)'s at different fixed points differ, so no "global" anomalous U(1) [Gmeiner et al. 02]

- Anomalous U(1) corresponds to non-zero trace of corresponding generator
- Generates localised FI terms with $\xi_{\rm FI}=gM_{\rm P}^2/\left(192\pi^2\right)$ tr $T_{\rm an}$
- 4D FI term is sum of localised ones, 4D anomalous U(1) is linear combination of local ones, weighted with tr T_{an} at each fixed point → tr T_{an}|_{4D} = 88
- In the 4D limit, anomalous U(1), and possibly other gauge groups, are spontaneously broken, some fields acquire large VEVs

3 Model: Bulk Anomalies

4 Model: Brane Anomalies

5 Conclusion and Outlook

< 67 →

- String-derived 6D supergravity model, with MSSM 4D limit
- Anomaly freedom checked explicitly
- Starting point for phenomenological investigations
- Potentially interesting features:
 - FI term from anomalous U(1) is $\mathcal{O}(\mathsf{GUT scale}) \rightsquigarrow$ determine scalar potential
 - Depending on VEVs of non-Abelian singlets, a truly hidden sector can be achieved
 - Blow-up of orbifold singularities, generalisation to K3?
 - Seesaw mechanism can be realised [Buchmüller et al. 07]
- $\mathcal{O}(100)$ similar models exist
- To Do: Investigation of vacuum structure, D-terms, U(1) breaking,...

< A >

[Lebedev et al. 06]