Seven-Dimensional Super-Yang-Mills Theory

in $\mathcal{N}=1$ Superfields

Christoph Lüdeling bctp and PI, University of Bonn

XXII Workshop Beyond the Standard Model Bad Honnef 2010
[arXiv:1003.xxx]

Motivation

- Superspace convenient for $\mathcal{N}=1$ model building
- Higher-dimensional models have more supersymmetry
- For higher SUSY, superspace not so useful anymore
- Superfield formulations desirable
- Idea: Single out one SUSY to be manifest in superfields
- Even in higher-dimensional models, want $\mathcal{N}=1$ in 4D, e.g. by coupling to lower-dimensional subspaces which preserve some, but not all SUSY
- This talk: Seven-dimensional case (D6 branes in IIA, ADE singularities in M theory on G_{2} manifolds)

Contents

(1) Introduction
(2) Gauge Covariant Descriptions
(3) The Seven Dimensional Case
(4) Applications (in progress)
(5) Summary

Superfields for Higher-Dimensional SUSY

- Choosing embedding into $\mathcal{N}=1$ superfields singles out one manifest supersymmetry
- Can turn this around: $\mathcal{N}=1$ SUSY \& higher-dimensional Lorentz symmetry implies higher SUSY
- Ten-dimensional SYM: [Marcus, Sagnotti, Siegel '83]
- Renewed interest: [Arkani-Hamed et al. '01]; [Marti, Pomarol '01] in 5D, including radion
- However, gauge symmetry not manifest
- Supergravity: [Linch, Luty, Phillips '02] for linearised 5D SUGRA; [Schmidt, Paccetti Correia, Tavartkiladze '04-06] in 5D, including compactification
- Gauge-covariant formulation in 5D: [Hebecker '01]
- Here: Extend this to seven dimensions

General Dimensions

- Higher-dimensional SUSY is either $\mathcal{N}=2$ or $\mathcal{N}=4$ from 4D perspective
- Degree-of-freedom-wise, SYM multiplet corresponds to one vector and one/three chiral multiplets of $\mathcal{N}=1$
- However, theory has more structure than just 4D $\mathcal{N}=4$ SUSY: higher-dimensional Lorentz symmetry, different for different dimensions
- In general, action cannot be written in terms of field strengths and covariant derivatives only
- Action contains V explicitly (i.e. not just e^{V} and W_{α}) \rightsquigarrow extra term to maintain gauge invariance (vanishes in WZ gauge)
- Reason: non-Abelian V transforms nonpolynomially

5D Case: Covariant Description

- 5d gauge multiplet: Vector A_{M}, scalar B, symplectic Majorana spinor pair ψ_{l}
- Off-shell component description known - includes $S U(2)$ triplet of auxiliary fields
- Identify vector and chiral superfields $V, \Phi=A_{5}+\mathrm{i} B+\cdots$
- Crucial point: Define covariant derivative $\nabla_{5}=\partial_{5}+\Phi$
- Define covariantly transforming "field strength" $Z=e^{-2 V} \nabla_{5} e^{2 V}$
- Simplest possible action, symbolically

$$
\mathscr{L} \sim \operatorname{tr} W^{\alpha} W_{\alpha}+\operatorname{tr} Z^{2}
$$

reproduces component action (already off-shell)

Symmetry Argument: 5 and 7 OK

Approach does not work in any dimension, for a symmetry reason: In 4D language, we have $\mathcal{N}=2$ or $\mathcal{N}=4$ with extra structure, so naïve R symmetry is broken to the geometrical symmetry $S O(d)$.

- In five or six dimensions, choosing one supersymmetry manifest breaks $S U(2)_{R} \rightarrow$ nothing. Geometrical symmetry is nothing for 5D, SO(2) for 6D
- In seven to ten dimensions, naïve manifest R symmetry is $S U(3)$. Only $S O(3)$ is subgroup, hence only 7D works.
- Form technical point of view, want scalar components of chiral multiplets to be $A_{i}+\mathrm{i} B_{i}$, so need equal number of extra gauge field components and non-gauge scalars.

10D SYM

Seven-dimensional SYM can be obtained from 10D by dimensional reduction. 10D Super-Yang-Mills theory has the "minimal" field content: Vector $A_{\widehat{M}}$ and Majorana-Weyl gaugino Λ. (Only on-shell description!)
Action:

$$
\mathscr{L}_{10}=-\frac{1}{4} F_{\widehat{M} \widehat{N}} F^{\widehat{M} \widehat{N}}+\frac{1}{2} \bar{\Lambda} \Gamma^{\widehat{M}} D_{\widehat{M}} \Lambda
$$

SUSY transformations:

$$
\delta A_{\widehat{M}}=\frac{i}{2} \bar{\epsilon} \Gamma_{\widehat{M}} \Lambda, \quad \delta \Lambda=-\frac{1}{4} F_{\widehat{M} \widehat{N}} \Gamma^{\widehat{M} \widehat{N}_{\epsilon}}
$$

7D SYM: Symmetries, Field Content

When reducing to seven dimensions, the fermions are a bit subtle due to different possible spinor types.

- Symmetries of the seven-dimensional theory
- Lorentz symmetry $S O(1,6)$
- Supersymmetry
- R symmetry $S U(2)$ - this is the remnant Lorentz $S O(3)$ which reappears as automorphism of the superalgebra, even for minimal 7D supersymmetry
- Fields:
- Vector $A_{M} \sim(\mathbf{7} ; \mathbf{1})$
- $S U(2)$ triplet of adjoint scalars $B_{i} \sim(\mathbf{1} ; \mathbf{3})$
- $S U(2)$ doublet of spinors $\Psi_{I} \sim(\mathbf{8} ; \mathbf{2})$ with symplectic Majorana condition

$$
\Psi_{I}=\varepsilon_{I J} C \bar{\Psi}_{J}^{T}
$$

7D SYM: Action, SUSY Transformations

The action is

$$
\begin{aligned}
\mathscr{L}= & -\frac{1}{4} \operatorname{tr} F_{M N} F^{M N}-\frac{1}{2} \operatorname{tr} D_{M} B_{i} D^{M} B^{i}+\frac{1}{4} g^{2} \operatorname{tr}\left[B_{i}, B_{j}\right]\left[B^{i}, B^{j}\right] \\
& +\frac{i}{2} \operatorname{tr} \bar{\Psi}_{l} \Gamma^{M} D_{M} \Psi_{I}+\frac{i}{2} g \operatorname{tr} \bar{\psi}_{I}\left[B_{i} \sigma_{I J}^{i}, \Psi_{J}\right]
\end{aligned}
$$

SUSY transformations:

$$
\begin{aligned}
\delta A_{M} & =-\frac{i}{2} \bar{\varepsilon}_{I} \Gamma_{M} \Psi_{I}, \quad \delta B_{i}=-\frac{1}{2} \sigma_{I J}^{i} \bar{\varepsilon}_{l} \Psi_{J}, \\
\delta \Psi_{I} & =-\frac{1}{4} F_{M N} \Gamma^{M N} \varepsilon_{I}+\frac{i}{2} \Gamma^{M} D_{M}\left(B_{i} \sigma_{i}\right)_{I J} \varepsilon_{J}+\frac{1}{4} g \varepsilon_{i j k}\left[B_{i}, B_{j}\right]\left(\sigma_{k}\right)_{I J} \varepsilon_{J}
\end{aligned}
$$

4D Degrees of Freedom

4D description reduces manifest symmetry:
$S O(1,6) \times S U(2) \rightarrow S O(1,3) \times S O(3) \times S U(2)$
In 4D language, the fields are:

- gauge vector $A_{\mu} \sim(\mathbf{4} ; \mathbf{1}, \mathbf{1})$
- three "gauge scalars" $A_{i} \sim(\mathbf{1} ; \mathbf{3}, \mathbf{1})$
- three adjoint scalars $B_{i} \sim(\mathbf{1} ; \mathbf{1}, \mathbf{3})$
- four (complex) Weyl spinors $\lambda_{r} \sim(2 ; 2,2)$

In full dimensional reduction, R symmetry and extra-dimensional Lorentz symmetry would form $S U(2) \times S U(2)=S O(4)$, enhanced to $S U(4)$ - the scalars in a $(\mathbf{3}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{3})=\mathbf{6}$, spinors in a 4. Singling out one supersymmetry breaks $S U(4) \rightarrow S U(3)$ - scalars now in $\mathbf{3}$, spinors in $\mathbf{1} \oplus 3$.
Here, however, the A_{i} are different from the B_{i} - keep the diagonal SO(3).

Superfield Embedding

Scalars and three spinors form triplet of chiral multiplets,

$$
\begin{gathered}
\Phi_{i}=A_{i}+\mathrm{i} B_{i}+2 \theta \psi_{i}+\theta^{2} F_{i} \\
\delta\left(A_{i}+\mathrm{i} B_{i}\right) \sim \epsilon \psi_{i}, \quad \delta \psi_{i} \sim F_{\mu i} \sigma^{\mu} \bar{\epsilon}-F_{i} \epsilon
\end{gathered}
$$

The other spinor and the vector form vector multiplet

$$
\begin{gathered}
V=-\theta \sigma^{\mu} \bar{\theta} A_{\mu}+\mathrm{i} \theta^{2} \bar{\theta} \bar{\chi}-\mathrm{i} \bar{\theta}^{2} \theta \chi+\frac{1}{2} \theta^{4} D \\
\delta A_{\mu} \sim \epsilon \sigma_{\mu} \bar{\chi}+\text { H.c. }, \quad \delta \chi \sim F_{\mu \nu} \sigma^{\mu \nu} \epsilon-D \epsilon .
\end{gathered}
$$

Note: Still on-shell description - auxiliary fields fixed to be

$$
\begin{aligned}
F_{i} & =\varepsilon_{i j k}\left(\partial_{j} \Phi_{k}+\frac{1}{2} \mathrm{i}\left[\Phi_{j}, \Phi_{k}\right]\right)=\frac{1}{2} \varepsilon_{i j k}\left(F_{j k}+2 \mathrm{i} D_{j} B_{k}-\mathrm{i}\left[B_{j}, B_{k}\right]\right) \\
D & =-D_{i} B_{i}
\end{aligned}
$$

SUSY \leftrightarrow Gauge mixing

As usual, closure of SUSY transformations on the vector multiplet requires additional field-dependent gauge transformation:

$$
\left[\delta_{\varepsilon}, \delta_{\eta}\right] A_{\mu}=-2 \mathrm{i}\left(\varepsilon \sigma^{\nu} \bar{\eta}-\eta \sigma^{\nu} \bar{\varepsilon}\right) \partial_{\nu} A_{\mu}+\delta_{\text {gauge }}
$$

where $\delta_{\text {gauge }}$ is a gauge transformation with parameter

$$
\Lambda=2 \mathrm{i}\left(\varepsilon \sigma^{\mu} \bar{\eta}-\eta \sigma^{\mu} \bar{\varepsilon}\right) A_{\mu}
$$

Here, the same happens for the chiral multiplets,

$$
\left[\delta_{\varepsilon}, \delta_{\eta}\right] \phi_{i}=-2 \mathrm{i}\left(\varepsilon \sigma^{\mu} \bar{\eta}-\eta \sigma^{\mu} \bar{\varepsilon}\right) \partial_{\mu} \phi_{i}+\delta_{\text {gauge }},
$$

with the same Λ - makes right-hand side gauge covariant.

SF Gauge Trafos, Field Strengths

The superfields transform as

$$
e^{2 V} \longrightarrow e^{-\mathrm{i} \bar{\Lambda}} e^{2 V} e^{\mathrm{i} \Lambda}, \quad \Phi_{i} \longrightarrow e^{-\mathrm{i} \Lambda}\left(\Phi_{i}-\mathrm{i} \partial_{i}\right) e^{\mathrm{i} \Lambda} .
$$

We can define a covariant derivative in the extra dimensions as

$$
\nabla_{i}=\partial_{i}+\mathrm{i} \Phi_{i}, \quad \quad \nabla_{i} \rightarrow e^{-\mathrm{i} \Lambda} \nabla_{i} e^{\mathrm{i} \Lambda}
$$

This allows to define two field strength superfields:

$$
\begin{aligned}
W_{\alpha} & =-\frac{1}{4} \bar{D}^{2} e^{-2 V} D_{\alpha} e^{2 V} \\
Z_{i} & =e^{-2 V} \nabla_{i} e^{2 V}
\end{aligned}
$$

which both transform as

$$
Z_{i} \rightarrow e^{-\mathrm{i} \Lambda} Z_{i} e^{\mathrm{i} \Lambda}, \quad W_{\alpha} \rightarrow e^{-\mathrm{i} \Lambda} W_{\alpha} e^{\mathrm{i} \Lambda}
$$

Action $-W^{2}+Z^{2}$

The action contains three pieces:

- The usual four-dimensional gauge kinetic term,

$$
\frac{1}{16} \int \mathrm{~d}^{2} \theta \operatorname{tr} W^{\alpha} W_{\alpha}+\text { H.c. }=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\mathrm{i} \chi \sigma^{\mu} D_{\mu} \bar{\chi}+\frac{1}{2} D^{2}
$$

- The kinetic term of the chiral multiplets,

$$
\begin{aligned}
\frac{1}{4} \int \mathrm{~d}^{4} \theta \operatorname{tr} Z_{i} Z_{i}= & -\frac{1}{2} F_{\mu i} F^{\mu i}-\frac{1}{2} D_{\mu} B_{i} D^{\mu} B_{i}+D D_{i} B_{i}+2 F_{i} \bar{F}_{i} \\
& -i \psi_{i} \sigma^{\mu} D_{\mu} \bar{\psi}_{i}-\left(\chi D_{i} \psi_{i}-\chi\left[B_{i}, \psi_{i}\right]+\text { H.c. }\right)
\end{aligned}
$$

Note: $\operatorname{tr} Z_{i} Z_{i}$ is Hermitean although Z_{i} itself is not!

Action - Chern-Simons Term

The purely extra-dimensional piece of the action is provided by a superpotential-like term

$$
\begin{array}{r}
\frac{1}{4} \int \mathrm{~d}^{2} \theta \operatorname{tr} \varepsilon_{i j k} \Phi_{i}\left(\partial_{j} \Phi_{k}+\frac{\mathrm{i}}{3}\left[\Phi_{j}, \Phi_{k}\right]\right)+\text { H.c. }= \\
\frac{1}{4} \varepsilon_{i j k} F_{i}\left(F_{j k}+2 \mathrm{i} D_{j} B_{k}-\mathrm{i}\left[B_{j}, B_{k}\right]\right) \\
\\
-\frac{1}{2} \varepsilon_{i j k} \psi_{i} D_{j} \psi_{k}+\frac{1}{2} \varepsilon_{i j k} \psi_{i}\left[B_{j}, \psi_{k}\right]+\text { H.c. }
\end{array}
$$

This is a superfield Chern-Simons term $\sim A \wedge d A+\frac{2}{3} A^{3}$ - so it is gauge invariant up to a "winding number" due to $\pi_{3}(G)=\mathbb{Z}$:

$$
\delta \mathscr{L}_{\mathrm{CS}} \sim \int \mathrm{~d}^{2} \theta \operatorname{tr} \varepsilon_{i j k}\left(g^{-1} \partial_{i} g\right)\left(g^{-1} \partial_{j} g\right)\left(g^{-1} \partial_{k} g\right)
$$

For gauge transformations that preserve WZ gauge, $\mathscr{L}_{\mathrm{CS}}$ is invariant

Complete Action

The full action

$$
\mathscr{L}=\mathscr{L}_{W^{2}}+\mathscr{L}_{Z^{2}}+\mathscr{L}_{\mathrm{CS}}
$$

leads to the auxiliary fields

$$
F_{i}=\frac{1}{2} \varepsilon_{i j k}\left(F_{j k}+2 \mathrm{i} D_{j} B_{k}-\mathrm{i}\left[B_{j}, B_{k}\right]\right), \quad D=-D_{i} B_{i}
$$

consistent with 7D transformations.
After eliminating, one gets back the original action

$$
\begin{aligned}
\mathscr{L}_{\mathrm{SF}}= & -\frac{1}{4} F_{M N} F^{M N}-\frac{1}{2} D_{M} B_{i} i^{M} B_{i}+\frac{1}{4}\left[B_{i}, B_{j}\right]\left[B_{i}, B_{j}\right] \\
& -i \chi \sigma^{\mu} D_{\mu} \bar{\chi}-\mathrm{i} \psi_{i} \sigma^{\mu} D_{\mu} \bar{\psi}_{i} \\
& -\left[\chi\left(D_{i} \psi_{i}-\left[B_{i}, \psi_{i}\right]\right)+\frac{1}{2} \varepsilon_{i j k} \psi_{i}\left(D_{j} \psi_{k}-\left[B_{j}, \psi_{k}\right]\right)+\text { H.c. }\right]
\end{aligned}
$$

Note: $\mathcal{N}=1$ SUSY and 7D Lorentz symmetry imply $\mathcal{N}=4$ - fixes coefficients.

Higher-Dimensional Operators in 7D

(still work in progress)

- Application of the formalism: Study of supersymmetric higher-dimensional operators
- Once three dimensions are compactified, full Lorentz symmetry is not required anymore
- For $U(1)$ gauge groups, W_{α} and Z_{i} are already gauge invariant
- Example: Gaugino masses from internal flux via

$$
\int \mathrm{d}^{4} \theta Z_{i} Z_{i} W^{\alpha} W_{\alpha} \sim F_{i j} F^{i j} \chi^{\alpha} \chi_{\alpha}
$$

- For string theory compactification, coupling to supergravity required - should at least include relevant moduli

D6 Intersections

Another application: coupling to matter on subspaces, e.g. at brane intersections

Consider two 6-brane (stacks), intersecting on four-dimensional subspace. Σ carries chiral multiplet in bifundamental.

Possible Operators

(work in progress)
Σ preserves $\mathcal{N}=1$ SUSY, possibly spontaneously broken restrictions on couplings from SUSY and gauge symmetry:

- Clearly, kinetic term is

$$
\int \mathrm{d}^{4} \theta \rho^{\dagger} e^{2(v+\widehat{v})} \rho
$$

- No direct coupling to the Φ_{i} - come with derivative
- Nontrivial gauge group cross-coupling necessarily involves ρ
- Exception: $U(1)$ gauge theory $-W_{\alpha}$ and Z_{i} are gauge invariant, geometry still constrains, e.g. $g^{i \hat{\imath}} Z_{i} \widehat{Z}_{\hat{\imath}} \sim \cos (\alpha) Z \widehat{Z}$, where α is the intersection angle
- As example, take transverse brane to carry $U(1)$ and a nonzero F term. Then

$$
\int \mathrm{d}^{4} \theta\left|\widehat{Z}_{\hat{\imath}}\right|^{2} \rho^{\dagger} e^{2(v+\widehat{v})} \rho \sim\left|\widehat{F}_{\hat{\imath}}\right|^{2} \bar{\rho} \rho
$$

Summary

- Gauge-covariant $\mathcal{N}=1$ superspace description of seven-dimensional SYM theory
- Possible in 5D and 7D
- Construction of Lagrangean straightforward - coefficients determined by higher-dimensional Lorentz symmetry
- Facilitates systematic study of higher-dimensional operators
- Application: Coupling to lower-dimensional subspaces, as e.g. in brane intersections $-\mathcal{N}=1$ SUSY is manifest
- still work in progress...

