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C. Lüdeling (bctp) Anomalies and Discrete Symmetries Bad Honnef, March 12, 2012 1 / 27



Motivation

• MSSM superpotential contains (potentially) bad terms:

Wbad ⊃ µHuHd + QLdc + ucdcdc + LLec

+ QQQL + ucucdcec + · · ·

• Forbid/constrain these operators by (discrete) symmetries, (matter
parity, proton hexality, ZR

4 ,...) [many papers, many people at this workshop]

• In string constructions, discrete symmetries can arise as remnants of
gauge and internal Lorentz symmetries
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• MSSM superpotential contains (potentially) bad terms:

Wbad ⊃ µHuHd + QLdc + ucdcdc + LLec

+ QQQL + ucucdcec + · · ·

• Forbid/constrain these operators by (discrete) symmetries, (matter
parity, proton hexality, ZR

4 ,...) [many papers, many people at this workshop]

• In string constructions, discrete symmetries can arise as remnants of
gauge and internal Lorentz symmetries

• Discuss anomalies in such models and the appearance of discrete
symmetries in the E8 × E8 heterotic string

• In particular: Consider Z3 orbifold and its blowup
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Anomalies in MSSM Extensions

In four dimensions, anomalies come from triangle diagrams, e.g.

G

G

U(1) ∝ AG2−U(1) =
∑

f

qf ℓ(rrr f )
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Anomalies in MSSM Extensions

In four dimensions, anomalies come from triangle diagrams, e.g.

G

G

U(1) ∝ AG2−U(1) =
∑

f

qf ℓ(rrr f )

Bottom-up: Focus on G 2 − U(1)A, because

• U(1)2A − U(1)Y anomaly should vanish

• U(1)3A anomaly depends on extra SM singlets

• consider ZN symmetries which arise as remnants of U(1)A
[Araki et al. ’08]

Top-down: We (in principle) know the spectrum, and so the anomaly
coefficients
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Anomaly Coefficients for MSSM with extra U(1)

Take MSSM with additional U(1)X , charges qQ ,. . . , qHd

Ã Anomaly coefficients generically not universal

Impose e.g.

• allowed Yukawa couplings,

• U(1)X is flavour-blind and commutes with SU(5) (but assume
doublet-triplet splitting, i.e. no Higgs triplets),

• may or may not be an R symmetry (i.e. R = 0 or R = 1)

ASU(3)2−U(1)X = 3 (3q10 + q5̄)−6 ,

ASU(2)2−U(1)X = 2 (3q10 + q5̄)−6 ,

AU(1)2
Y
−U(1)X

= 2 (3q10 + q5̄)−9 .

For ZN symmetries, coefficients might be universal mod N or mod N
2
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Anomaly Polynomial

[Wess, Zumino ’71; Stora ’84; Alvarez-Gaumé, Ginsparg ’84]

Variation of path integral measure under gauge transformation:
∫

Dψe iS −→

∫
Dψe iAe iS , A =

∫
I
(1)
d

Wess–Zumino consistency conditions Ã descent equations

dI
(1)
d = δI

(0)
d+1 , dI

(0)
d+1 = Id+2 .

• Anomaly form I
(1)
d : linear in transformation parameter, polynomial

in gauge connections and field strengths

• Chern–Simons form I
(0)
d+1: polynomial in gauge connections and field

strengths

• Anomaly polynomial Id+2: closed gauge invariant polynomial in field
strengths – contains all relevant information about the anomaly

Treat I
(0)
d+1 and Id+2 as formal objects, but can be made rigorous
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Green–Schwarz Mechanism

[Green, Schwarz ’84]

Green–Schwarz mechanism: Cancel transformation of measure with
variation of action – requires

a) factorisation of anomaly polynomial, Id+2 = Yd+2−kXk , and

b) (k − 2)-form field Bk−2 with gauge transformation

δBk−2 = −X
(1)
k−2 ,
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Green–Schwarz Mechanism

[Green, Schwarz ’84]

Green–Schwarz mechanism: Cancel transformation of measure with
variation of action – requires

a) factorisation of anomaly polynomial, Id+2 = Yd+2−kXk , and

b) (k − 2)-form field Bk−2 with gauge transformation

δBk−2 = −X
(1)
k−2 ,

y anomaly cancelled by variation of GS action

SGS =

∫
1

2

∣∣∣dBk−2 + X
(0)
k−1

∣∣∣
2
+ Bk−2Yd+2−k + · · ·

• Generalisation: sum of factorised anomalies Id+2 =
∑

a Y iX i is
cancelled by set of form fields B i with appropriate transformation

• Exchanging Yd+2−k ↔ Xk corresponds to dualising Bk−2 → B̃d−k .
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GS Mechanism in 10D

Two possible multiplets:

• supergravity multiplet
(
eM
A , ΨM , B2, χ, φ

)

• vector multiplet (AM , Λ)

Anomalies arise from gravitino, dilatino and gauginos, cancellation by
Kalb–Ramond two-form B2

Ã gauge group must be SO(32) or E8 × E8, with I12 = X uni
4 Y8 and

X uni
4 = tr R2 − tr F′2 − tr F′′2

δB2 = tr ΘdΩ − tr λ′dA′ − tr λ′′dA′′

[Bergshoeff et al. ’82]
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Two possible multiplets:

• supergravity multiplet
(
eM
A , ΨM , B2, χ, φ

)

• vector multiplet (AM , Λ)

Anomalies arise from gravitino, dilatino and gauginos, cancellation by
Kalb–Ramond two-form B2

Ã gauge group must be SO(32) or E8 × E8, with I12 = X uni
4 Y8 and

X uni
4 = tr R2 − tr F′2 − tr F′′2

δB2 = tr ΘdΩ − tr λ′dA′ − tr λ′′dA′′

[Bergshoeff et al. ’82]

Field strength of B2 has nontrivial Bianchi identity,

H3 = dB2 + X
uni,(0)
3 =⇒ dH3 = X uni

4

=⇒

∫

C

X uni
4 = 0 for all four-cycles C
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GS Mechanism in 4D

I6 = X4Y2 Ã Y2 = dAA is field strength of the “anomalous U(1)”
Cancellation by two-form b2 or scalar a (“axion”) – by dualising, can
restrict to scalars with transformation a → a − λ

=⇒ SGS =

∫
1

2
|da + AA|

2 + aX4
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GS Mechanism in 4D

I6 = X4Y2 Ã Y2 = dAA is field strength of the “anomalous U(1)”
Cancellation by two-form b2 or scalar a (“axion”) – by dualising, can
restrict to scalars with transformation a → a − λ

=⇒ SGS =

∫
1

2
|da + AA|

2 + aX4

• Axion kinetic term gives Stueckelberg mass term for U(1)A ⇒
anomalous U(1)s get broken, but remain as (perturbative) selection
rules

• X4 contains field strengths of other gauge group factors Gi ,
weighted with the anomaly coefficients:

X4 = Agrav−U(1) tr R2 +
∑

i

AG2
i
−U(1)A

tr F 2
i

• In particular: If anomaly is cancelled by Kalb–Ramond b2

⇒ X4 is reduction of X uni
4 , and universal axion a0 couples universally

to all gauge groups
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Overview of Heterotic GS Mechanisms

Distinguish Orbifolds and smooth Calabi–Yaus with vector bundles:

Orbifolds Calabi–Yau X with Gauge Bundle

B2 = b2: single two-form in 4D Ã

universal axion a0

B2 = b2 + βrEr , Er ∈ H2(X ) Ã

additional axions βr

Universality: a0 couples to reduc-
tion of X uni

4

Couplings βrX
r
4 depend on gauge

background and curvature – some
remnants of universality

(at most) one anomalous U(1) Number of anomalous U(1)s given
by rank of bundle
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T 6/Z3 Orbifold

For illustration, consider simple T 6/Z3 orbifold model

V = 1
3

(
1, 1,−2, 05

) (
08

)
, no Wilson lines

⇒ standard embedding, 27 equivalent fixed points

Gauge group E6 × SU(3) [×E8]

spectrum 3
(
27, 3

)
+ 27

[
(27, 1) + 3 (1, 3)

]

In particular, no anomalous U(1), hence universal axion does not shift
under gauge transformations, and no FI term has to be cancelled
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Blowup

[Groot Nibbelink et al. 07-09]

Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing
out singularities – connection to smooth Calabi–Yau with bundles
In particular: VEVs for twisted non-oscillator states (27, 1)
↔ line bundles (i.e. Abelian fluxes)
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Blowup

[Groot Nibbelink et al. 07-09]

Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing
out singularities – connection to smooth Calabi–Yau with bundles
In particular: VEVs for twisted non-oscillator states (27, 1)
↔ line bundles (i.e. Abelian fluxes)

Procedure:

1 Replace fixed points by exceptional divisors Er (P2s)

2 Turn on Abelian gauge flux along the exceptional divisors,

F = V I
r HIEr , HI : Cartan generators of E8

Bundle vector Vr given by shifted momentum of blow-up mode

Note: Line bundles don’t reduce the rank, axion shifts do:

B2 = b2 − βrEr , δB2 = − tr λF ⇒ δβr = tr λVr
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Donaldson–Uhlenbeck–Yau equation

Bundle has to satisfy (analogue of D-term eqaution)

0 =
1

2

∫

X

J ∧ J ∧ F =
∑

r

vol(Er )Vr , with all vol(Er ) > 0

DUY equation cannot be satisfied with one or two distinct Vr
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Donaldson–Uhlenbeck–Yau equation

Bundle has to satisfy (analogue of D-term eqaution)

0 =
1

2

∫

X

J ∧ J ∧ F =
∑

r

vol(Er )Vr , with all vol(Er ) > 0

DUY equation cannot be satisfied with one or two distinct Vr

Simple choice:

1 Take three bundle vectors V(1,2,3) which sum to zero,
V(1) + V(2) + V(3) = 0

2 Assign V(1) to first k exceptional divisors, V(2) to the next p and
V(3) to remaining 27 − k − p = q

⇒ DUY Equation becomes

k∑

r=1

vol Er =

k+p∑

r=k+1

vol Er =
27∑

r=k+p+1

vol Er
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Bundle Vectors

Choose bundle vectors from psh of twisted 27,
Ã flux quantisation and Bianchi Identity fulfilled automatically, break
E6 → SO(10) × U(1) at each Er
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Bundle Vectors

Choose bundle vectors from psh of twisted 27,
Ã flux quantisation and Bianchi Identity fulfilled automatically, break
E6 → SO(10) × U(1) at each Er

Specifically, choose

V(1) =
1

3

(
2, 2, 2, 05

)

V(2) =
1

3

(
−1,−1,−1, 3, 04

)

V(3) is linearly dependent, does not break further
⇒ gauge group SO(8) × U(1)A × U(1)B × SU(3)
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Bundle Vectors

Choose bundle vectors from psh of twisted 27,
Ã flux quantisation and Bianchi Identity fulfilled automatically, break
E6 → SO(10) × U(1) at each Er

Specifically, choose

V(1) =
1

3

(
2, 2, 2, 05

)

V(2) =
1

3

(
−1,−1,−1, 3, 04

)

V(3) is linearly dependent, does not break further
⇒ gauge group SO(8) × U(1)A × U(1)B × SU(3)

Decomposition

27 −→ 8
s(1,−1) ⊕ 8

c(1,1) ⊕ 8
v(−2,0) ⊕ 1(−2,−2) ⊕ 1(−2,2) ⊕ 1(4,0)

Massless spectrum depends on (k , p, q)
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Blowup Anomalies

Orbifold: No anomaly
Blowup: two U(1)’s, different spectrum
⇒ anomaly polynomial I6 =

∫
X

I12 with backgrounds inserted

⇒ I6 ∼ FA
3 ·

(
k − 6

12

)
+ FAF 2

B ·

(
k − 18

4

)

+ FA

[
tr F 2

SU(3) + tr F 2
SO(8) +

7

48
tr R2

]
·

(
k − 9

2

)

+ FB

[
1

8
F 2

B +
1

48
F 2

A + tr F 2
SU(3) + tr F 2

SO(8) +
7

48
tr R2

]
·

(
p − q

2

)
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Orbifold: No anomaly
Blowup: two U(1)’s, different spectrum
⇒ anomaly polynomial I6 =

∫
X

I12 with backgrounds inserted

⇒ I6 ∼ FA
3 ·

(
k − 6

12

)
+ FAF 2

B ·

(
k − 18

4

)

+ FA

[
tr F 2

SU(3) + tr F 2
SO(8) +

7

48
tr R2

]
·

(
k − 9

2

)

+ FB

[
1

8
F 2

B +
1

48
F 2

A + tr F 2
SU(3) + tr F 2

SO(8) +
7

48
tr R2

]
·

(
p − q

2

)

• For p = q, U(1)B is omalous, while U(1)A is always anomalous
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Orbifold: No anomaly
Blowup: two U(1)’s, different spectrum
⇒ anomaly polynomial I6 =

∫
X

I12 with backgrounds inserted

⇒ I6 ∼ FA
3 ·

(
k − 6

12

)
+ FAF 2

B ·

(
k − 18

4

)

+ FA

[
tr F 2

SU(3) + tr F 2
SO(8) +

7

48
tr R2

]
·

(
k − 9

2

)

+ FB

[
1

8
F 2

B +
1

48
F 2

A + tr F 2
SU(3) + tr F 2

SO(8) +
7

48
tr R2

]
·

(
p − q

2

)

• For p = q, U(1)B is omalous, while U(1)A is always anomalous

• Remnant universality: Coefficients of non-Abelian groups from one
E8 are equal, and proportional to gravitational anomaly (only true if
one E8 unbroken)
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Axion Shifts and massive U(1)B

Axions βr shift under U(1)A,B – universal axion does not!
⇒ U(1)A and U(1)B always massive, even if one of them is omalous:

∫

X

H3 ∧ ∗H3 = AI
µ
Aµ JM2

IJ + · · · , M2
IJ = V I

r V J
s ·

∫

X

Er ∧ ∗6 Es

Mass matrix is positive definite and always rank-two (and depends on the
Kähler parameters)
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Axion Shifts and massive U(1)B

Axions βr shift under U(1)A,B – universal axion does not!
⇒ U(1)A and U(1)B always massive, even if one of them is omalous:

∫

X

H3 ∧ ∗H3 = AI
µ
Aµ JM2

IJ + · · · , M2
IJ = V I

r V J
s ·

∫

X

Er ∧ ∗6 Es

Mass matrix is positive definite and always rank-two (and depends on the
Kähler parameters)

→ Stueckelberg mass possible without anomaly (but not vice versa)

Note: Still a coupling of the universal axion to X4, as required by
supersymmetry
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Gauge Symmetry

Remnant non-R symmetries: discrete subgroup of U(1)A × U(1)B which
leaves VEVs invariant
Blow-up modes:

14,0 , 1−2,−2 , 1−2,2

⇒ discrete remnant Z4 × Z4, generated by

T± : φ(qA,qB ) −→ exp

{
2πi

4
(qA ± qB)

}
φ(qA,qB )

However: Charges of all massless fields are even under both Z4s
Ã only Z2 × Z2 realised on massless spectrum

Both Z2 factors are omalous
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R Symmetries

• R symmetries do not commute with SUSY ↔ θ transforms, and
different components of SUSY multiplets have different charges

• Only defined up to mixing with non-R symmetries

• For N = 1 SUSY, only one θ Ã only one U(1) or ZN R symmetry –
otherwise can redefine generators such that only one acts on θ

• Usual convention: θ has charge 1 ⇒ Superpotential W has charge 2
(y Z2 doesn’t really count as an R symmetry)
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R Symmetries

• R symmetries do not commute with SUSY ↔ θ transforms, and
different components of SUSY multiplets have different charges

• Only defined up to mixing with non-R symmetries

• For N = 1 SUSY, only one θ Ã only one U(1) or ZN R symmetry –
otherwise can redefine generators such that only one acts on θ

• Usual convention: θ has charge 1 ⇒ Superpotential W has charge 2
(y Z2 doesn’t really count as an R symmetry)

• In compactifications, internal Lorentz transformations treat spinors
and scalars differently Ã can lead to R symmetries in 4D

• Orbifolds are special points in moduli space, so expect more
symmetries – in particular, for general smooth spaces, expect no R

symmetry in general
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R Symmetries from Orbifolds

R transformations from sublattice rotations act as

R : Φ −→ e2πivRΦ

where (for Z3 orbifolds) v =
(

1
3 , 0, 0

)
, R = qsh − ∆N
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R Symmetries from Orbifolds

R transformations from sublattice rotations act as

R : Φ −→ e2πivRΦ

where (for Z3 orbifolds) v =
(

1
3 , 0, 0

)
, R = qsh − ∆N

Symmetry conventions somewhat tricky:

• For bosons, both v and R quantised in units of 1
3 , so Z9 symmetry

(i.e. R9 = 1)

• For fermions, R f = Rb −
(

1
2 , 1

2 , 1
2

)
, so θ has charge 1

6 (i.e. Z6

“R symmetry”)

• Hence: Z18 symmetry with charges for

(bosons, fermions, θ) =
1

18
(2n, 2n − 3, 3)

• Can redefine charges such that θ has charge 1 and superpotential
has charge 2 mod 6, but then fields have non-integer charges
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Model: VEV picture

Our blow-up modes have

R =

(
1

3
,
1

3
,
1

3

)

Seek unbroken combinations of the three sublattice rotations and
U(1)A,B :

14,0 −→ Rp
1 R

q
2 R

r
3 TA TB14,0 = 14,0 ,

1−2,−2 −→ Rp
1 R

q
2 R

r
3 TA TB1−2,−2 = 1−2,−2 ,

1−2,2 −→ Rp
1 R

q
2 R

r
3 TA TB1−2,2 = 1−2,2

However, this implies p + q + r = 3 ⇒ only a Z2 R symmetry survives in
blow-up
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Model: GLSM Description

[Witten ’93;Groot Nibbelink ’10; Blaszczyk et al. ’11]

(cf. talk by Fabian Ruehle this afternoon)
Algebraically, describe the orbifold by (P2[3] is a T 2)

P2[3] ×P2[3] ×P2[3]

Z3

Blowup (crepant resolution) in (0, 2) GLSM description:

• Introduce extra coordinates (exceptional divisors) and U(1)s

• Geometry given by F and D term equations, GLSM FI terms
become CY Kähler parameters

• Bundle given by “chiral-Fermi” superfields ΛI with charges
determined by the bundle vectors
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Model: GLSM Description

[Witten ’93;Groot Nibbelink ’10; Blaszczyk et al. ’11]

(cf. talk by Fabian Ruehle this afternoon)
Algebraically, describe the orbifold by (P2[3] is a T 2)

P2[3] ×P2[3] ×P2[3]

Z3

Blowup (crepant resolution) in (0, 2) GLSM description:

• Introduce extra coordinates (exceptional divisors) and U(1)s

• Geometry given by F and D term equations, GLSM FI terms
become CY Kähler parameters

• Bundle given by “chiral-Fermi” superfields ΛI with charges
determined by the bundle vectors

∃ discrete automorphisms of the coordinates which leave F and D terms
invariant Ã discrete symmetries – these are R symmetries if holomorphic
three-form ω transforms (ω transforms like W , so Z2 is invisible)
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GLSM for (k , p, q) = (9, 9, 9) Model

Two types of R symmetries:

• P2 coordinates ziα only appear as z3
iα or |ziα|

2 ⇒ Z3 rotations
Presumably broken by deformations of Kähler potential terms
(schematically, φ4d massless modes in 4d)

∫
d2θ+φ4d(x

µ)N(z , xi ) ΛΛ

Fits with orbifold: Bundle corresponds to blowup
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GLSM for (k , p, q) = (9, 9, 9) Model

Two types of R symmetries:

• P2 coordinates ziα only appear as z3
iα or |ziα|

2 ⇒ Z3 rotations
Presumably broken by deformations of Kähler potential terms
(schematically, φ4d massless modes in 4d)

∫
d2θ+φ4d(x

µ)N(z , xi ) ΛΛ

Fits with orbifold: Bundle corresponds to blowup

• For certain values of Kähler parameters, permutation symmetries:
Group-wise exchanges of exceptional divisors – in orbifold, similar
interpretation for equal VEVs

⇒ Generically, no R symmetry (except at most Z2), but enhanced at
certain loci of parameter space
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Conclusions

• Discussed anomalies in 4D low-energy theories from the heterotic
string

• Anomalies are generically not universal – the orbifold anomalous
U(1) is the exception because it is cancelled by the universal axion

• For blowups of heterotic orbifolds, many axions possible
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Conclusions

• Discussed anomalies in 4D low-energy theories from the heterotic
string

• Anomalies are generically not universal – the orbifold anomalous
U(1) is the exception because it is cancelled by the universal axion

• For blowups of heterotic orbifolds, many axions possible

• Some rest of universality: Non-Abelian subgroups of one E8 have
universal coefficients (but for SU(5), this is before doublet-triplet
splitting)

• Line bundles do reduce the rank via the axion shift – also omalous
U(1)s can become massive

• Blow-ups can leave gauged discrete subgroups unbroken – important
for phenomenology

• On orbifold, R symmetries exist but are broken by the blow-up
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Outlook

• Found nice agreement between orbifold and blow-up picture, up to
some subtleties

• “Geometry part” of GLSM generically has many “unbreakable”
R-like symmetries – seem to be broken by the bundle, but better
understanding of their breaking required

• Linked to determination of charged massless spectrum

• Different non-generic type of R symmetries: Exchange symmetries,
appearing for certain loci in Kähler moduli space, e.g. exchange of
exceptional divisors if their volumes are equal

• Study these symmetries for more realistic models, including Wilson
lines etc.
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