(Non-) Universal Anomalies and Discrete Symmetries from the Heterotic String

Christoph Lüdeling
bctp and PI, University of Bonn

XXIV Workshop Beyond the Standard Model Bad Honnef 2012

CL, Fabian Ruehle, Clemens Wieck [arXiv:1203.xxxx]

Motivation

- MSSM superpotential contains (potentially) bad terms:

$$
\begin{aligned}
W_{\mathrm{bad}} \supset & \mu H_{u} H_{d}+Q L d^{c}+u^{c} d^{c} d^{c}+L L e^{c} \\
& +Q Q Q L+u^{c} u^{c} d^{c} e^{c}+\cdots
\end{aligned}
$$

- Forbid/constrain these operators by (discrete) symmetries, (matter parity, proton hexality, $\mathbb{Z}_{4}^{R}, \ldots$) [many papers, many people at this workshop]
- In string constructions, discrete symmetries can arise as remnants of gauge and internal Lorentz symmetries

Motivation

- MSSM superpotential contains (potentially) bad terms:

$$
\begin{aligned}
W_{\text {bad }} \supset & \mu H_{u} H_{d}+Q L d^{c}+u^{c} d^{c} d^{c}+L L e^{c} \\
& +Q Q Q L+u^{c} u^{c} d^{c} e^{c}+\cdots
\end{aligned}
$$

- Forbid/constrain these operators by (discrete) symmetries, (matter parity, proton hexality, $\mathbb{Z}_{4}^{R}, \ldots$) [many papers, many people at this workshop]
- In string constructions, discrete symmetries can arise as remnants of gauge and internal Lorentz symmetries
- Discuss anomalies in such models and the appearance of discrete symmetries in the $E_{8} \times E_{8}$ heterotic string
- In particular: Consider \mathbb{Z}_{3} orbifold and its blowup

Contents

(1) Green-Schwarz Mechanism and Universality
(2) Orbifold and Blowup Model
(3) Remnant Discrete Symmetries
(4) Conclusion

Anomalies in MSSM Extensions

In four dimensions, anomalies come from triangle diagrams, e.g.

Anomalies in MSSM Extensions

In four dimensions, anomalies come from triangle diagrams, e.g.

Bottom-up: Focus on $G^{2}-U(1)_{A}$, because

- $U(1)_{A}^{2}-U(1)_{Y}$ anomaly should vanish
- $U(1)_{A}^{3}$ anomaly depends on extra SM singlets
- consider \mathbb{Z}_{N} symmetries which arise as remnants of $U(1)_{A}$
[Araki et al. '08]
Top-down: We (in principle) know the spectrum, and so the anomaly coefficients

Anomaly Coefficients for MSSM with extra $U(1)$

Take MSSM with additional $U(1)_{X}$, charges $q_{Q}, \ldots, q_{H_{d}}$ \rightsquigarrow Anomaly coefficients generically not universal Impose e.g.

- allowed Yukawa couplings,
- $U(1)_{X}$ is flavour-blind and commutes with $S U(5)$ (but assume doublet-triplet splitting, i.e. no Higgs triplets),
- may or may not be an R symmetry (i.e. $R=0$ or $R=1$)

$$
\begin{aligned}
& A_{S U(3)^{2}-U(1)_{X}}=3\left(3 q_{10}+q_{5}\right)-6 \\
& A_{S U(2)^{2}-U(1)_{X}}=2\left(3 q_{10}+q_{5}\right)-6 \\
& A_{U(1)_{Y}^{2}-U(1)_{X}}=2\left(3 q_{10}+q_{5}\right)-9
\end{aligned}
$$

For \mathbb{Z}_{N} symmetries, coefficients might be universal $\bmod N$ or $\bmod \frac{N}{2}$

Anomaly Polynomial

[Wess, Zumino '71; Stora '84; Alvarez-Gaumé, Ginsparg '84]

Variation of path integral measure under gauge transformation:

$$
\int \mathcal{D} \psi e^{\mathrm{i} S} \longrightarrow \int \mathcal{D} \psi e^{\mathrm{i} \mathcal{A}} e^{\mathrm{i} S}, \quad \mathcal{A}=\int I_{d}^{(1)}
$$

Wess-Zumino consistency conditions \rightsquigarrow descent equations

$$
\mathrm{d} I_{d}^{(1)}=\delta l_{d+1}^{(0)}, \quad \mathrm{d} l_{d+1}^{(0)}=I_{d+2}
$$

- Anomaly form $I_{d}^{(1)}$: linear in transformation parameter, polynomial in gauge connections and field strengths
- Chern-Simons form $I_{d+1}^{(0)}$: polynomial in gauge connections and field strengths
- Anomaly polynomial I_{d+2} : closed gauge invariant polynomial in field strengths - contains all relevant information about the anomaly
Treat $I_{d+1}^{(0)}$ and I_{d+2} as formal objects, but can be made rigorous

Green-Schwarz Mechanism

[Green, Schwarz '84]
Green-Schwarz mechanism: Cancel transformation of measure with variation of action - requires
a) factorisation of anomaly polynomial, $I_{d+2}=Y_{d+2-k} X_{k}$, and
b) $(k-2)$-form field B_{k-2} with gauge transformation

$$
\delta B_{k-2}=-X_{k-2}^{(1)}
$$

Green-Schwarz Mechanism

Green-Schwarz mechanism: Cancel transformation of measure with variation of action - requires
a) factorisation of anomaly polynomial, $I_{d+2}=Y_{d+2-k} X_{k}$, and
b) $(k-2)$-form field B_{k-2} with gauge transformation

$$
\delta B_{k-2}=-X_{k-2}^{(1)}
$$

\curvearrowright anomaly cancelled by variation of GS action

$$
S_{\mathrm{GS}}=\int \frac{1}{2}\left|\mathrm{~d} B_{k-2}+X_{k-1}^{(0)}\right|^{2}+B_{k-2} Y_{d+2-k}+\cdots
$$

- Generalisation: sum of factorised anomalies $I_{d+2}=\sum_{a} Y^{i} X^{i}$ is cancelled by set of form fields B^{i} with appropriate transformation
- Exchanging $Y_{d+2-k} \leftrightarrow X_{k}$ corresponds to dualising $B_{k-2} \rightarrow \widetilde{B}_{d-k}$.

GS Mechanism in 10D

Two possible multiplets:

- supergravity multiplet $\left(e_{A}^{M}, \Psi_{M}, B_{2}, \chi, \phi\right)$
- vector multiplet $\left(\mathfrak{A}_{M}, \wedge\right)$

Anomalies arise from gravitino, dilatino and gauginos, cancellation by Kalb-Ramond two-form B_{2}
\rightsquigarrow gauge group must be $S O(32)$ or $E_{8} \times E_{8}$, with $I_{12}=X_{4}^{\text {uni }} Y_{8}$ and

$$
\begin{aligned}
X_{4}^{\text {uni }} & =\operatorname{tr} \mathfrak{R}^{2}-\operatorname{tr} \mathfrak{F}^{\prime 2}-\operatorname{tr} \mathfrak{F}^{\prime \prime 2} \\
\delta B_{2} & =\operatorname{tr} \Theta \mathrm{d} \Omega-\operatorname{tr} \lambda^{\prime} \mathrm{d} \mathfrak{A}^{\prime}-\operatorname{tr} \lambda^{\prime \prime} \mathrm{d} \mathfrak{A}^{\prime \prime}
\end{aligned}
$$

[Bergshoeff et al. '82]

GS Mechanism in 10D

Two possible multiplets:

- supergravity multiplet $\left(e_{A}^{M}, \Psi_{M}, B_{2}, \chi, \phi\right)$
- vector multiplet $\left(\mathfrak{A}_{M}, \Lambda\right)$

Anomalies arise from gravitino, dilatino and gauginos, cancellation by Kalb-Ramond two-form B_{2} \rightsquigarrow gauge group must be $S O(32)$ or $E_{8} \times E_{8}$, with $I_{12}=X_{4}^{\text {uni }} Y_{8}$ and

$$
\begin{aligned}
X_{4}^{\mathrm{uni}} & =\operatorname{tr} \mathfrak{R}^{2}-\operatorname{tr} \mathfrak{F}^{\prime 2}-\operatorname{tr} \mathfrak{F}^{\prime \prime 2} \\
\delta B_{2} & =\operatorname{tr} \Theta \mathrm{d} \Omega-\operatorname{tr} \lambda^{\prime} \mathrm{d} \mathfrak{A}^{\prime}-\operatorname{tr} \lambda^{\prime \prime} \mathrm{d} \mathfrak{A}^{\prime \prime}
\end{aligned}
$$

[Bergshoeff et al. '82]
Field strength of B_{2} has nontrivial Bianchi identity,

$$
\begin{aligned}
H_{3} & =\mathrm{d} B_{2}+X_{3}^{\text {uni, }(0)} \Longrightarrow \mathrm{d}_{3}=X_{4}^{\text {uni }} \\
\Longrightarrow \int_{C} X_{4}^{\text {uni }} & =0 \text { for all four-cycles } C
\end{aligned}
$$

GS Mechanism in 4D

$I_{6}=X_{4} Y_{2} \rightsquigarrow Y_{2}=\mathrm{d} A_{A}$ is field strength of the "anomalous $U(1)$ " Cancellation by two-form b_{2} or scalar a ("axion") - by dualising, can restrict to scalars with transformation $a \rightarrow a-\lambda$

$$
\Longrightarrow S_{\mathrm{GS}}=\int \frac{1}{2}\left|\mathrm{~d} a+A_{A}\right|^{2}+a X_{4}
$$

GS Mechanism in 4D

$I_{6}=X_{4} Y_{2} \rightsquigarrow Y_{2}=\mathrm{d} A_{A}$ is field strength of the "anomalous $U(1)$ "
Cancellation by two-form b_{2} or scalar a ("axion") - by dualising, can restrict to scalars with transformation $a \rightarrow a-\lambda$

$$
\Longrightarrow S_{\mathrm{GS}}=\int \frac{1}{2}\left|\mathrm{~d} a+A_{A}\right|^{2}+a X_{4}
$$

- Axion kinetic term gives Stueckelberg mass term for $U(1)_{A} \Rightarrow$ anomalous $U(1)$ s get broken, but remain as (perturbative) selection rules
- X_{4} contains field strengths of other gauge group factors G_{i}, weighted with the anomaly coefficients:

$$
X_{4}=A_{\operatorname{grav}-U(1)} \operatorname{tr} R^{2}+\sum_{i} A_{G_{i}^{2}-U(1)_{A}} \operatorname{tr} F_{i}^{2}
$$

- In particular: If anomaly is cancelled by Kalb-Ramond b_{2}
$\Rightarrow X_{4}$ is reduction of $X_{4}^{\text {uni }}$, and universal axion a_{0} couples universally to all gauge groups

Overview of Heterotic GS Mechanisms

Distinguish Orbifolds and smooth Calabi-Yaus with vector bundles:

Orbifolds	Calabi-Yau X with Gauge Bundle
$B_{2}=b_{2}$: single two-form in 4D \rightsquigarrow universal axion a_{0}	$B_{2}=b_{2}+\beta_{r} E_{r}, E_{r} \in H^{2}(X) \rightsquigarrow$ additional axions β_{r}
Universality: a couples to reduc- tion of $X_{4}^{\text {uni }}$	Couplings $\beta_{r} X_{4}^{r}$ depend on gauge background and curvature - some remnants of universality
(at most) one anomalous $U(1)$	Number of anomalous $U(1)$ s given by rank of bundle

Contents

(1) Green-Schwarz Mechanism and Universality

(2) Orbifold and Blowup Model

(3) Remnant Discrete Symmetries

(4) Conclusion

T^{6} / \mathbb{Z}_{3} Orbifold

For illustration, consider simple T^{6} / \mathbb{Z}_{3} orbifold model

$V=\frac{1}{3}\left(1,1,-2,0^{5}\right)\left(0^{8}\right)$, no Wilson lines
\Rightarrow standard embedding, 27 equivalent fixed points

$$
\begin{array}{cc}
\text { Gauge group } & E_{6} \times S U(3)\left[\times E_{8}\right] \\
\text { spectrum } & 3(\mathbf{2 7}, \overline{\mathbf{3}})+27[(\mathbf{2 7}, \mathbf{1})+3(\mathbf{1}, \mathbf{3})]
\end{array}
$$

In particular, no anomalous $U(1)$, hence universal axion does not shift under gauge transformations, and no FI term has to be cancelled

Blowup

[Groot Nibbelink et al. 07-09]
Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing out singularities - connection to smooth Calabi-Yau with bundles In particular: VEVs for twisted non-oscillator states $(\mathbf{2 7}, \mathbf{1})$ \leftrightarrow line bundles (i.e. Abelian fluxes)

Blowup

[Groot Nibbelink et al. 07-09]
Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing out singularities - connection to smooth Calabi-Yau with bundles In particular: VEVs for twisted non-oscillator states (27, 1)
\leftrightarrow line bundles (i.e. Abelian fluxes)

Procedure:

(1) Replace fixed points by exceptional divisors $E_{r}\left(\mathbb{P}^{2} s\right)$
(2) Turn on Abelian gauge flux along the exceptional divisors,

$$
\mathcal{F}=V_{r}^{\prime} H_{l} E_{r}, \quad H_{l}: \text { Cartan generators of } E_{8}
$$

Bundle vector V_{r} given by shifted momentum of blow-up mode Note: Line bundles don't reduce the rank, axion shifts do:

$$
B_{2}=b_{2}-\beta_{r} E_{r}, \quad \delta B_{2}=-\operatorname{tr} \lambda \mathcal{F} \Rightarrow \delta \beta_{r}=\operatorname{tr} \lambda V_{r}
$$

Donaldson-Uhlenbeck-Yau equation

Bundle has to satisfy (analogue of D-term eqaution)

$$
0=\frac{1}{2} \int_{X} J \wedge J \wedge \mathcal{F}=\sum_{r} \operatorname{vol}\left(E_{r}\right) V_{r}, \quad \text { with all } \operatorname{vol}\left(E_{r}\right)>0
$$

DUY equation cannot be satisfied with one or two distinct V_{r}

Donaldson-Uhlenbeck-Yau equation

Bundle has to satisfy (analogue of D-term eqaution)

$$
0=\frac{1}{2} \int_{X} J \wedge J \wedge \mathcal{F}=\sum_{r} \operatorname{vol}\left(E_{r}\right) V_{r}, \quad \text { with all } \operatorname{vol}\left(E_{r}\right)>0
$$

DUY equation cannot be satisfied with one or two distinct V_{r} Simple choice:
(1) Take three bundle vectors $V_{(1,2,3)}$ which sum to zero, $V_{(1)}+V_{(2)}+V_{(3)}=0$
(2) Assign $V_{(1)}$ to first k exceptional divisors, $V_{(2)}$ to the next p and $V_{(3)}$ to remaining $27-k-p=q$
\Rightarrow DUY Equation becomes

$$
\sum_{r=1}^{k} \operatorname{vol} E_{r}=\sum_{r=k+1}^{k+p} \operatorname{vol} E_{r}=\sum_{r=k+p+1}^{27} \operatorname{vol} E_{r}
$$

Bundle Vectors

Choose bundle vectors from $p_{\text {sh }}$ of twisted 27, \rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically, break $E_{6} \rightarrow S O(10) \times U(1)$ at each E_{r}

Bundle Vectors

Choose bundle vectors from $p_{\text {sh }}$ of twisted 27,
\rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically, break $E_{6} \rightarrow S O(10) \times U(1)$ at each E_{r}

Specifically, choose

$$
\begin{aligned}
& V_{(1)}=\frac{1}{3}\left(2,2,2,0^{5}\right) \\
& V_{(2)}=\frac{1}{3}\left(-1,-1,-1,3,0^{4}\right)
\end{aligned}
$$

$V_{(3)}$ is linearly dependent, does not break further
\Rightarrow gauge group $S O(8) \times U(1)_{A} \times U(1)_{B} \times S U(3)$

Bundle Vectors

Choose bundle vectors from $p_{\text {sh }}$ of twisted 27,
\rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically, break $E_{6} \rightarrow S O(10) \times U(1)$ at each E_{r}

Specifically, choose

$$
\begin{aligned}
& V_{(1)}=\frac{1}{3}\left(2,2,2,0^{5}\right) \\
& V_{(2)}=\frac{1}{3}\left(-1,-1,-1,3,0^{4}\right)
\end{aligned}
$$

$V_{(3)}$ is linearly dependent, does not break further
\Rightarrow gauge group $S O(8) \times U(1)_{A} \times U(1)_{B} \times S U(3)$

Bundle Vectors

Choose bundle vectors from $p_{\text {sh }}$ of twisted 27,
\rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically, break $E_{6} \rightarrow S O(10) \times U(1)$ at each E_{r}
Specifically, choose

$$
\begin{aligned}
& V_{(1)}=\frac{1}{3}\left(2,2,2,0^{5}\right) \\
& V_{(2)}=\frac{1}{3}\left(-1,-1,-1,3,0^{4}\right)
\end{aligned}
$$

$V_{(3)}$ is linearly dependent, does not break further
\Rightarrow gauge group $S O(8) \times U(1)_{A} \times U(1)_{B} \times S U(3)$
Decomposition

$$
\mathbf{2 7} \longrightarrow \mathbf{8}_{\mathrm{S}(1,-1)} \oplus \mathbf{8}_{\mathrm{C}(1,1)} \oplus \mathbf{8}_{\mathrm{V}(-2,0)} \oplus \mathbf{1}_{(-2,-2)} \oplus \mathbf{1}_{(-2,2)} \oplus \mathbf{1}_{(4,0)}
$$

Massless spectrum depends on (k, p, q)

Blowup Anomalies

Orbifold: No anomaly

 Blowup: two $U(1)$'s, different spectrum\Rightarrow anomaly polynomial $I_{6}=\int_{X} I_{12}$ with backgrounds inserted

$$
\begin{aligned}
\Rightarrow I_{6} \sim & F_{A}^{3} \cdot\left(\frac{k-6}{12}\right)+F_{A} F_{B}^{2} \cdot\left(\frac{k-18}{4}\right) \\
& +F_{A}\left[\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right] \cdot\left(\frac{k-9}{2}\right) \\
& +F_{B}\left[\frac{1}{8} F_{B}^{2}+\frac{1}{48} F_{A}^{2}+\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right] \cdot\left(\frac{p-q}{2}\right)
\end{aligned}
$$

Blowup Anomalies

Orbifold: No anomaly

 Blowup: two $U(1)$'s, different spectrum\Rightarrow anomaly polynomial $I_{6}=\int_{X} I_{12}$ with backgrounds inserted

$$
\begin{aligned}
\Rightarrow I_{6} \sim & F_{A}^{3} \cdot\left(\frac{k-6}{12}\right)+F_{A} F_{B}^{2} \cdot\left(\frac{k-18}{4}\right) \\
& +F_{A}\left[\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right] \cdot\left(\frac{k-9}{2}\right) \\
& +F_{B}\left[\frac{1}{8} F_{B}^{2}+\frac{1}{48} F_{A}^{2}+\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right] \cdot\left(\frac{p-q}{2}\right)
\end{aligned}
$$

- For $p=q, U(1)_{B}$ is omalous, while $U(1)_{A}$ is always anomalous

Blowup Anomalies

Orbifold: No anomaly
Blowup: two $U(1)$'s, different spectrum
\Rightarrow anomaly polynomial $I_{6}=\int_{X} I_{12}$ with backgrounds inserted

$$
\begin{aligned}
\Rightarrow I_{6} \sim & F_{A}^{3} \cdot\left(\frac{k-6}{12}\right)+F_{A} F_{B}^{2} \cdot\left(\frac{k-18}{4}\right) \\
& +F_{A}\left[\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right]\left(\frac{k-9}{2}\right) \\
& +F_{B}\left[\frac{1}{8} F_{B}^{2}+\frac{1}{48} F_{A}^{2}+\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right]\left(\frac{p-q}{2}\right)
\end{aligned}
$$

- For $p=q, U(1)_{B}$ is omalous, while $U(1)_{A}$ is always anomalous
- Remnant universality: Coefficients of non-Abelian groups from one E_{8} are equal, and proportional to gravitational anomaly (only true if one E_{8} unbroken)

Axion Shifts and massive $U(1)_{B}$

Axions β_{r} shift under $U(1)_{A, B}$ - universal axion does not!
$\Rightarrow U(1)_{A}$ and $U(1)_{B}$ always massive, even if one of them is omalous:

$$
\int_{X} H_{3} \wedge * H_{3}=A_{\mu}^{\prime} A^{\mu J} M_{I J}^{2}+\cdots, \quad M_{I J}^{2}=V_{r}^{\prime} V_{s}^{J} \cdot \int_{X} E_{r} \wedge * *_{6} E_{s}
$$

Mass matrix is positive definite and always rank-two (and depends on the Kähler parameters)

Axion Shifts and massive $U(1)_{B}$

Axions β_{r} shift under $U(1)_{A, B}$ - universal axion does not!
$\Rightarrow U(1)_{A}$ and $U(1)_{B}$ always massive, even if one of them is omalous:

$$
\int_{X} H_{3} \wedge * H_{3}=A_{\mu}^{\prime} A^{\mu J} M_{I J}^{2}+\cdots, \quad M_{I J}^{2}=V_{r}^{\prime} V_{s}^{J} \cdot \int_{X} E_{r} \wedge * *_{6} E_{s}
$$

Mass matrix is positive definite and always rank-two (and depends on the Kähler parameters)
\rightarrow Stueckelberg mass possible without anomaly (but not vice versa)
Note: Still a coupling of the universal axion to X_{4}, as required by supersymmetry

Contents

(1) Green-Schwarz Mechanism and Universality

(2) Orbifold and Blowup Model

(3) Remnant Discrete Symmetries

(4) Conclusion

Gauge Symmetry

Remnant non- R symmetries: discrete subgroup of $U(1)_{A} \times U(1)_{B}$ which leaves VEVs invariant
Blow-up modes:

$$
\mathbf{1}_{4,0}, \quad \mathbf{1}_{-2,-2}, \quad \mathbf{1}_{-2,2}
$$

\Rightarrow discrete remnant $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$, generated by

$$
T_{ \pm}: \phi_{\left(q_{A}, q_{B}\right)} \longrightarrow \exp \left\{\frac{2 \pi \mathrm{i}}{4}\left(q_{A} \pm q_{B}\right)\right\} \phi_{\left(q_{A}, q_{B}\right)}
$$

However: Charges of all massless fields are even under both \mathbb{Z}_{4} s \rightsquigarrow only $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ realised on massless spectrum

Both \mathbb{Z}_{2} factors are omalous

R Symmetries

- R symmetries do not commute with SUSY $\leftrightarrow \theta$ transforms, and different components of SUSY multiplets have different charges
- Only defined up to mixing with non- R symmetries
- For $\mathcal{N}=1$ SUSY, only one $\theta \rightsquigarrow$ only one $U(1)$ or $\mathbb{Z}_{N} R$ symmetry otherwise can redefine generators such that only one acts on θ
- Usual convention: θ has charge $1 \Rightarrow$ Superpotential W has charge 2 ($\curvearrowright \mathbb{Z}_{2}$ doesn't really count as an R symmetry)

R Symmetries

- R symmetries do not commute with SUSY $\leftrightarrow \theta$ transforms, and different components of SUSY multiplets have different charges
- Only defined up to mixing with non- R symmetries
- For $\mathcal{N}=1$ SUSY, only one $\theta \rightsquigarrow$ only one $U(1)$ or $\mathbb{Z}_{N} R$ symmetry otherwise can redefine generators such that only one acts on θ
- Usual convention: θ has charge $1 \Rightarrow$ Superpotential W has charge 2 ($\curvearrowright \mathbb{Z}_{2}$ doesn't really count as an R symmetry)
- In compactifications, internal Lorentz transformations treat spinors and scalars differently \rightsquigarrow can lead to R symmetries in 4D
- Orbifolds are special points in moduli space, so expect more symmetries - in particular, for general smooth spaces, expect no R symmetry in general

R Symmetries from Orbifolds

R transformations from sublattice rotations act as

$$
\mathcal{R}: \Phi \longrightarrow e^{2 \pi i v R} \Phi
$$

where (for Z_{3} orbifolds) $v=\left(\underline{\frac{1}{3}}, 0,0\right), R=q_{\text {sh }}-\Delta N$

R Symmetries from Orbifolds

R transformations from sublattice rotations act as

$$
\mathcal{R}: \Phi \longrightarrow e^{2 \pi i v R} \Phi
$$

where (for Z_{3} orbifolds) $v=\left(\underline{\frac{1}{3}}, 0,0\right), R=q_{\text {sh }}-\Delta N$
Symmetry conventions somewhat tricky:

- For bosons, both v and R quantised in units of $\frac{1}{3}$, so \mathbb{Z}_{9} symmetry (i.e. $\mathcal{R}^{9}=\mathbb{1}$)
- For fermions, $R^{\mathrm{f}}=R^{\mathrm{b}}-\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, so θ has charge $\frac{1}{6}$ (i.e. \mathbb{Z}_{6} " R symmetry")
- Hence: \mathbb{Z}_{18} symmetry with charges for

$$
\text { (bosons, fermions, } \theta)=\frac{1}{18}(2 n, 2 n-3,3)
$$

- Can redefine charges such that θ has charge 1 and superpotential has charge $2 \bmod 6$, but then fields have non-integer charges

Model: VEV picture

Our blow-up modes have

$$
R=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

Seek unbroken combinations of the three sublattice rotations and $U(1)_{A, B}$:

$$
\begin{aligned}
\mathbf{1}_{4,0} & \longrightarrow \mathcal{R}_{1}^{p} \mathcal{R}_{2}^{q} \mathcal{R}_{3}^{r} T_{A} T_{B} \mathbf{1}_{4,0}=\mathbf{1}_{4,0}, \\
\mathbf{1}_{-2,-2} & \longrightarrow \mathcal{R}_{1}^{p} \mathcal{R}_{2}^{q} \mathcal{R}_{3}^{r} T_{A} T_{B} \mathbf{1}_{-2,-2}=\mathbf{1}_{-2,-2}, \\
\mathbf{1}_{-2,2} & \longrightarrow \mathcal{R}_{1}^{p} \mathcal{R}_{2}^{q} \mathcal{R}_{3}^{r} T_{A} T_{B} \mathbf{1}_{-2,2}=\mathbf{1}_{-2,2}
\end{aligned}
$$

However, this implies $p+q+r=3 \Rightarrow$ only a $\mathbb{Z}_{2} R$ symmetry survives in blow-up

Model: GLSM Description

[Witten '93;Groot Nibbelink '10; Blaszczyk et al. '11]
(cf. talk by Fabian Ruehle this afternoon)
Algebraically, describe the orbifold by $\left(\mathbb{P}^{2}[3]\right.$ is a $\left.T^{2}\right)$

$$
\frac{\mathbb{P}^{2}[3] \times \mathbb{P}^{2}[3] \times \mathbb{P}^{2}[3]}{\mathbb{Z}_{3}}
$$

Blowup (crepant resolution) in $(0,2)$ GLSM description:

- Introduce extra coordinates (exceptional divisors) and $U(1) s$
- Geometry given by F and D term equations, GLSM FI terms become CY Kähler parameters
- Bundle given by "chiral-Fermi" superfields Λ, with charges determined by the bundle vectors

Model: GLSM Description

[Witten '93;Groot Nibbelink '10; Blaszczyk et al. '11]
(cf. talk by Fabian Ruehle this afternoon)
Algebraically, describe the orbifold by $\left(\mathbb{P}^{2}[3]\right.$ is a $\left.T^{2}\right)$

$$
\frac{\mathbb{P}^{2}[3] \times \mathbb{P}^{2}[3] \times \mathbb{P}^{2}[3]}{\mathbb{Z}_{3}}
$$

Blowup (crepant resolution) in $(0,2)$ GLSM description:

- Introduce extra coordinates (exceptional divisors) and $U(1) s$
- Geometry given by F and D term equations, GLSM FI terms become CY Kähler parameters
- Bundle given by "chiral-Fermi" superfields $\Lambda_{\text {/ }}$ with charges determined by the bundle vectors
\exists discrete automorphisms of the coordinates which leave F and D terms invariant \rightsquigarrow discrete symmetries - these are R symmetries if holomorphic three-form ω transforms (ω transforms like W, so \mathbb{Z}_{2} is invisible)

GLSM for $(k, p, q)=(9,9,9)$ Model

Two types of R symmetries:

- \mathbb{P}^{2} coordinates $z_{i \alpha}$ only appear as $z_{i \alpha}^{3}$ or $\left|z_{i \alpha}\right|^{2} \Rightarrow \mathbb{Z}_{3}$ rotations Presumably broken by deformations of Kähler potential terms (schematically, $\phi_{4 \mathrm{~d}}$ massless modes in 4d)

$$
\int \mathrm{d}^{2} \theta^{+} \phi_{4 \mathrm{~d}}\left(x^{\mu}\right) N\left(z, x_{i}\right) \wedge \bar{\Lambda}
$$

Fits with orbifold: Bundle corresponds to blowup

GLSM for $(k, p, q)=(9,9,9)$ Model

Two types of R symmetries:

- \mathbb{P}^{2} coordinates $z_{i \alpha}$ only appear as $z_{i \alpha}^{3}$ or $\left|z_{i \alpha}\right|^{2} \Rightarrow \mathbb{Z}_{3}$ rotations Presumably broken by deformations of Kähler potential terms (schematically, $\phi_{4 \mathrm{~d}}$ massless modes in 4d)

$$
\int \mathrm{d}^{2} \theta^{+} \phi_{4 \mathrm{~d}}\left(x^{\mu}\right) N\left(z, x_{i}\right) \wedge \bar{\Lambda}
$$

Fits with orbifold: Bundle corresponds to blowup

- For certain values of Kähler parameters, permutation symmetries: Group-wise exchanges of exceptional divisors - in orbifold, similar interpretation for equal VEVs
\Rightarrow Generically, no R symmetry (except at most \mathbb{Z}_{2}), but enhanced at certain loci of parameter space

Contents

(1) Green-Schwarz Mechanism and Universality

(2) Orbifold and Blowup Model

(3) Remnant Discrete Symmetries

(4) Conclusion

Conclusions

- Discussed anomalies in 4D low-energy theories from the heterotic string
- Anomalies are generically not universal - the orbifold anomalous $U(1)$ is the exception because it is cancelled by the universal axion
- For blowups of heterotic orbifolds, many axions possible

Conclusions

- Discussed anomalies in 4D low-energy theories from the heterotic string
- Anomalies are generically not universal - the orbifold anomalous $U(1)$ is the exception because it is cancelled by the universal axion
- For blowups of heterotic orbifolds, many axions possible
- Some rest of universality: Non-Abelian subgroups of one E_{8} have universal coefficients (but for $S U(5)$, this is before doublet-triplet splitting)
- Line bundles do reduce the rank via the axion shift - also omalous $U(1)$ s can become massive
- Blow-ups can leave gauged discrete subgroups unbroken - important for phenomenology
- On orbifold, R symmetries exist but are broken by the blow-up

Outlook

- Found nice agreement between orbifold and blow-up picture, up to some subtleties
- "Geometry part" of GLSM generically has many "unbreakable" R-like symmetries - seem to be broken by the bundle, but better understanding of their breaking required
- Linked to determination of charged massless spectrum
- Different non-generic type of R symmetries: Exchange symmetries, appearing for certain loci in Kähler moduli space, e.g. exchange of exceptional divisors if their volumes are equal
- Study these symmetries for more realistic models, including Wilson lines etc.

