(Non-)Universal Anomalies and Discrete Symmetries from the Heterotic String

Christoph Lüdeling bctp and PI, University of Bonn

XXIV Workshop Beyond the Standard Model Bad Honnef 2012

CL, Fabian Ruehle, Clemens Wieck [arXiv:1203.xxxx]

• MSSM superpotential contains (potentially) bad terms:

$$W_{bad} \supset \mu H_u H_d + QLd^c + u^c d^c d^c + LLe^c + QQQL + u^c u^c d^c e^c + \cdots$$

- Forbid/constrain these operators by (discrete) symmetries, (matter parity, proton hexality, Z^R₄,...) [many papers, many people at this workshop]
- In string constructions, discrete symmetries can arise as remnants of gauge and internal Lorentz symmetries

• MSSM superpotential contains (potentially) bad terms:

$$W_{bad} \supset \mu H_u H_d + QLd^c + u^c d^c d^c + LLe^c + QQQL + u^c u^c d^c e^c + \cdots$$

- Forbid/constrain these operators by (discrete) symmetries, (matter parity, proton hexality, Z^R₄,...) [many papers, many people at this workshop]
- In string constructions, discrete symmetries can arise as remnants of gauge and internal Lorentz symmetries
- Discuss anomalies in such models and the appearance of discrete symmetries in the $E_8 \times E_8$ heterotic string
- In particular: Consider \mathbb{Z}_3 orbifold and its blowup

1 Green–Schwarz Mechanism and Universality

- **2** Orbifold and Blowup Model
- **3** Remnant Discrete Symmetries

Anomalies in MSSM Extensions

In four dimensions, anomalies come from triangle diagrams, e.g.

$$G \longrightarrow U(1) \propto A_{G^2-U(1)} = \sum_f q_f \ell(\mathbf{r}_f)$$

In four dimensions, anomalies come from triangle diagrams, e.g.

$$G \longrightarrow U(1) \propto A_{G^2-U(1)} = \sum_f q_f \ell(\mathbf{r}_f)$$

Bottom-up: Focus on $G^2 - U(1)_A$, because

- $U(1)_A^2 U(1)_Y$ anomaly should vanish
- $U(1)^3_A$ anomaly depends on extra SM singlets
- consider \mathbb{Z}_N symmetries which arise as remnants of $U(1)_A$

[Araki et al. '08]

< A >

Top-down: We (in principle) know the spectrum, and so the anomaly coefficients

Anomaly Coefficients for MSSM with extra U(1)

Take MSSM with additional $U(1)_X$, charges q_Q, \ldots, q_{H_d} \rightsquigarrow Anomaly coefficients generically not universal

Impose e.g.

- allowed Yukawa couplings,
- $U(1)_X$ is flavour-blind and commutes with SU(5) (but assume doublet-triplet splitting, i.e. no Higgs triplets),
- may or may not be an R symmetry (i.e. R = 0 or R = 1)

$$\begin{split} &A_{SU(3)^2-U(1)_X} = 3 \left(3q_{10} + q_{\bar{5}} \right) - 6, \\ &A_{SU(2)^2-U(1)_X} = 2 \left(3q_{10} + q_{\bar{5}} \right) - 6, \\ &A_{U(1)_Y^2-U(1)_X} = 2 \left(3q_{10} + q_{\bar{5}} \right) - 9. \end{split}$$

For \mathbb{Z}_N symmetries, coefficients might be universal mod N or mod $\frac{N}{2}$

[Wess, Zumino '71; Stora '84; Alvarez-Gaumé, Ginsparg '84] Variation of path integral measure under gauge transformation:

$$\int \mathcal{D}\psi e^{\mathrm{i}S} \longrightarrow \int \mathcal{D}\psi e^{\mathrm{i}\mathcal{A}} e^{\mathrm{i}S}, \quad \mathcal{A} = \int I_d^{(1)}$$

Wess–Zumino consistency conditions \rightsquigarrow descent equations

$$\mathsf{d} I_d^{(1)} = \delta I_{d+1}^{(0)}, \qquad \qquad \mathsf{d} I_{d+1}^{(0)} = I_{d+2}.$$

- Anomaly form $I_d^{(1)}$: linear in transformation parameter, polynomial in gauge connections and field strengths
- Chern–Simons form $I_{d+1}^{(0)}$: polynomial in gauge connections and field strengths
- Anomaly polynomial I_{d+2} : closed gauge invariant polynomial in field strengths contains all relevant information about the anomaly
- Treat $I_{d+1}^{(0)}$ and I_{d+2} as formal objects, but can be made rigorous

[Green, Schwarz '84]

< A >

Green–Schwarz mechanism: Cancel transformation of measure with variation of action – requires

- a) factorisation of anomaly polynomial, $I_{d+2} = Y_{d+2-k}X_k$, and
- b) (k-2)-form field B_{k-2} with gauge transformation

$$\delta B_{k-2} = -X_{k-2}^{(1)},$$

[Green, Schwarz '84]

Green–Schwarz mechanism: Cancel transformation of measure with variation of action – requires

- a) factorisation of anomaly polynomial, $I_{d+2} = Y_{d+2-k}X_k$, and
- b) (k-2)-form field B_{k-2} with gauge transformation

$$\delta B_{k-2} = -X_{k-2}^{(1)},$$

 \curvearrowright anomaly cancelled by variation of GS action

$$S_{\text{GS}} = \int \frac{1}{2} \left| \mathrm{d}B_{k-2} + X_{k-1}^{(0)} \right|^2 + B_{k-2}Y_{d+2-k} + \cdots$$

• Generalisation: sum of factorised anomalies $I_{d+2} = \sum_{a} Y^{i} X^{i}$ is cancelled by set of form fields B^{i} with appropriate transformation

• Exchanging $Y_{d+2-k} \leftrightarrow X_k$ corresponds to dualising $B_{k-2} \rightarrow \widetilde{B}_{d-k}$.

GS Mechanism in 10D

Two possible multiplets:

- supergravity multiplet $(e_A^M, \Psi_M, B_2, \chi, \phi)$
- vector multiplet $(\mathfrak{A}_M, \Lambda)$

Anomalies arise from gravitino, dilatino and gauginos, cancellation by Kalb–Ramond two-form $B_{\rm 2}$

 \rightsquigarrow gauge group must be SO(32) or $E_8 imes E_8$, with $I_{12} = X_4^{\mathsf{uni}} Y_8$ and

$$\begin{split} X_4^{\mathrm{uni}} &= \mathrm{tr}\,\mathfrak{R}^2 - \mathrm{tr}\,\mathfrak{F}'^2 - \mathrm{tr}\,\mathfrak{F}''^2\\ \delta B_2 &= \mathrm{tr}\,\Theta\mathrm{d}\Omega - \mathrm{tr}\,\lambda'\mathrm{d}\mathfrak{A}' - \mathrm{tr}\,\lambda''\mathrm{d}\mathfrak{A}'' \end{split}$$

[Bergshoeff et al. '82]

GS Mechanism in 10D

Two possible multiplets:

- supergravity multiplet $\left(e^{M}_{A},\Psi_{M},B_{2},\chi,\phi\right)$
- vector multiplet $(\mathfrak{A}_M, \Lambda)$

Anomalies arise from gravitino, dilatino and gauginos, cancellation by Kalb–Ramond two-form $B_{\rm 2}$

 \rightsquigarrow gauge group must be SO(32) or $E_8 imes E_8$, with $I_{12} = X_4^{\mathsf{uni}} Y_8$ and

$$X_4^{\text{uni}} = \operatorname{tr} \mathfrak{R}^2 - \operatorname{tr} \mathfrak{F}'^2 - \operatorname{tr} \mathfrak{F}''^2$$
$$\delta B_2 = \operatorname{tr} \Theta d\Omega - \operatorname{tr} \lambda' d\mathfrak{A}' - \operatorname{tr} \lambda'' d\mathfrak{A}''$$

[Bergshoeff et al. '82]

< A >

Field strength of B_2 has nontrivial Bianchi identity,

$$H_3 = dB_2 + X_3^{\text{uni},(0)} \implies dH_3 = X_4^{\text{uni}}$$
$$\implies \int_C X_4^{\text{uni}} = 0 \quad \text{for all four-cycles } C$$

GS Mechanism in 4D

 $I_6 = X_4 Y_2 \rightsquigarrow Y_2 = dA_A$ is field strength of the "anomalous U(1)" Cancellation by two-form b_2 or scalar a ("axion") – by dualising, can restrict to scalars with transformation $a \rightarrow a - \lambda$

$$\implies S_{\mathsf{GS}} = \int rac{1}{2} \left| \mathsf{d} \pmb{a} + A_{\mathcal{A}} \right|^2 + \pmb{a} X_{\mathcal{A}}$$

GS Mechanism in 4D

 $I_6 = X_4 Y_2 \rightsquigarrow Y_2 = dA_A$ is field strength of the "anomalous U(1)" Cancellation by two-form b_2 or scalar a ("axion") – by dualising, can restrict to scalars with transformation $a \rightarrow a - \lambda$

$$\implies S_{\text{GS}} = \int rac{1}{2} \left| \mathsf{d} \mathbf{a} + A_{\mathcal{A}} \right|^2 + \mathbf{a} X_4$$

- Axion kinetic term gives Stueckelberg mass term for $U(1)_A \Rightarrow$ anomalous U(1)s get broken, but remain as (perturbative) selection rules
- X₄ contains field strengths of other gauge group factors G_i, weighted with the anomaly coefficients:

$$X_4 = A_{\text{grav}-U(1)} \operatorname{tr} R^2 + \sum_i A_{G_i^2 - U(1)_A} \operatorname{tr} F_i^2$$

In particular: If anomaly is cancelled by Kalb–Ramond b₂
 ⇒ X₄ is reduction of X₄^{uni}, and universal axion a₀ couples universally to all gauge groups

C. Lüdeling (bctp)

Distinguish Orbifolds and smooth Calabi-Yaus with vector bundles:

Orbifolds	Calabi–Yau X with Gauge Bundle
$B_2 = b_2$: single two-form in 4D \rightsquigarrow universal axion a_0	$B_2 = b_2 + \beta_r E_r, E_r \in H^2(X) \rightsquigarrow$ additional axions β_r
Universality: a_0 couples to reduction of X_4^{uni}	Couplings $\beta_r X_4^r$ depend on gauge background and curvature – some remnants of universality
(at most) one anomalous $U(1)$	Number of anomalous $U(1)$ s given by rank of bundle

1 Green–Schwarz Mechanism and Universality

2 Orbifold and Blowup Model

3 Remnant Discrete Symmetries

T^6/\mathbb{Z}_3 Orbifold

For illustration, consider simple T^6/\mathbb{Z}_3 orbifold model

 $V = \frac{1}{3} (1, 1, -2, 0^5) (0^8)$, no Wilson lines \Rightarrow standard embedding, 27 equivalent fixed points

 $\begin{array}{ll} \mbox{Gauge group} & E_6 \times SU(3) \left[\times E_8 \right] \\ \mbox{spectrum} & 3 \left(\textbf{27}, \overline{\textbf{3}} \right) + 27 \left[(\textbf{27}, \textbf{1}) + 3 \left(\textbf{1}, \textbf{3} \right) \right] \end{array}$

In particular, no anomalous U(1), hence universal axion does not shift under gauge transformations, and no FI term has to be cancelled

< 🗗 >

Blowup

[Groot Nibbelink et al. 07-09]

< A >

Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing out singularities – connection to smooth Calabi–Yau with bundles In particular: VEVs for twisted non-oscillator states (27, 1) \leftrightarrow line bundles (i.e. Abelian fluxes)

[Groot Nibbelink et al. 07-09]

< A >

Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing out singularities – connection to smooth Calabi–Yau with bundles In particular: VEVs for twisted non-oscillator states (27, 1) \leftrightarrow line bundles (i.e. Abelian fluxes)

Procedure:

- **1** Replace fixed points by exceptional divisors E_r (\mathbb{P}^2 s)
- 2 Turn on Abelian gauge flux along the exceptional divisors,

$$\mathcal{F} = V_r^I H_I E_r$$
, H_I : Cartan generators of E_8

Bundle vector V_r given by shifted momentum of blow-up mode Note: Line bundles don't reduce the rank, axion shifts do:

$$B_2 = b_2 - \beta_r E_r, \quad \delta B_2 = -\operatorname{tr} \lambda \mathcal{F} \quad \Rightarrow \quad \delta \beta_r = \operatorname{tr} \lambda V_r$$

Donaldson–Uhlenbeck–Yau equation

Bundle has to satisfy (analogue of *D*-term eqaution)

$$0 = \frac{1}{2} \int_X J \wedge J \wedge \mathcal{F} = \sum_r \operatorname{vol}(E_r) V_r \,, \quad \text{with all } \operatorname{vol}(E_r) > 0$$

DUY equation cannot be satisfied with one or two distinct V_r

Donaldson–Uhlenbeck–Yau equation

Bundle has to satisfy (analogue of *D*-term eqaution)

$$0 = \frac{1}{2} \int_X J \wedge J \wedge \mathcal{F} = \sum_r \operatorname{vol}(E_r) V_r \,, \quad \text{with all } \operatorname{vol}(E_r) > 0$$

DUY equation cannot be satisfied with one or two distinct V_r

Simple choice:

- **1** Take three bundle vectors $V_{(1,2,3)}$ which sum to zero, $V_{(1)} + V_{(2)} + V_{(3)} = 0$
- 2 Assign $V_{(1)}$ to first k exceptional divisors, $V_{(2)}$ to the next p and $V_{(3)}$ to remaining 27 k p = q
- \Rightarrow DUY Equation becomes

$$\sum_{r=1}^{k} \operatorname{vol} E_{r} = \sum_{r=k+1}^{k+p} \operatorname{vol} E_{r} = \sum_{r=k+p+1}^{27} \operatorname{vol} E_{r}$$

C. Lüdeling (bctp)

Choose bundle vectors from p_{sh} of twisted **27**, \rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically, break $E_6 \rightarrow SO(10) \times U(1)$ at each E_r

Choose bundle vectors from p_{sh} of twisted **27**, \rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically, break $E_6 \rightarrow SO(10) \times U(1)$ at each E_r

Specifically, choose

$$V_{(1)} = \frac{1}{3} (2, 2, 2, 0^5)$$

$$V_{(2)} = \frac{1}{3} (-1, -1, -1, 3, 0^4)$$

 $V_{(3)}$ is linearly dependent, does not break further \Rightarrow gauge group $SO(8) \times U(1)_A \times U(1)_B \times SU(3)$

< A >

 \sim

Choose bundle vectors from p_{sh} of twisted **27**, \rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically, break $E_6 \rightarrow SO(10) \times U(1)$ at each E_r

Specifically, choose

$$V_{(1)} = \frac{1}{3} (2, 2, 2, 0^5) - \underbrace{V_{(2)}}_{V_{(2)}} = \frac{1}{3} (-1, -1, -1, 3, 0^4) - \underbrace{V_{(2)}}_{V_{(2)}} = \underbrace{V_{(2)}}_{V_{(2)}} + \underbrace{V_{(2)}}_{V_{(2)}} +$$

 $V_{(3)}$ is linearly dependent, does not break further \Rightarrow gauge group $SO(8) \times U(1)_A \times U(1)_B \times SU(3)$

< A >

 \sim

Choose bundle vectors from p_{sh} of twisted **27**, \rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically, break $E_6 \rightarrow SO(10) \times U(1)$ at each E_r

Specifically, choose

 $V_{(3)}$ is linearly dependent, does not break further \Rightarrow gauge group $SO(8) \times U(1)_A \times U(1)_B \times SU(3)$

Decomposition

$$\mathbf{27} \longrightarrow \mathbf{8}_{\mathrm{S}(1,-1)} \oplus \mathbf{8}_{\mathrm{C}(1,1)} \oplus \mathbf{8}_{\mathrm{V}(-2,0)} \oplus \mathbf{1}_{(-2,-2)} \oplus \mathbf{1}_{(-2,2)} \oplus \mathbf{1}_{(4,0)}$$

Massless spectrum depends on (k, p, q)

 \sim

Blowup Anomalies

Orbifold: No anomaly Blowup: two U(1)'s, different spectrum \Rightarrow anomaly polynomial $I_6 = \int_X I_{12}$ with backgrounds inserted

$$\Rightarrow I_6 \sim F_A{}^3 \cdot \left(\frac{k-6}{12}\right) + F_A F_B^2 \cdot \left(\frac{k-18}{4}\right) \\ + F_A \left[\operatorname{tr} F_{SU(3)}^2 + \operatorname{tr} F_{SO(8)}^2 + \frac{7}{48} \operatorname{tr} R^2 \right] \cdot \left(\frac{k-9}{2}\right) \\ + F_B \left[\frac{1}{8} F_B^2 + \frac{1}{48} F_A^2 + \operatorname{tr} F_{SU(3)}^2 + \operatorname{tr} F_{SO(8)}^2 + \frac{7}{48} \operatorname{tr} R^2 \right] \cdot \left(\frac{p-q}{2}\right)$$

Blowup Anomalies

Orbifold: No anomaly Blowup: two U(1)'s, different spectrum \Rightarrow anomaly polynomial $I_6 = \int_X I_{12}$ with backgrounds inserted

$$\Rightarrow I_{6} \sim F_{A}^{3} \cdot \left(\frac{k-6}{12}\right) + F_{A}F_{B}^{2} \cdot \left(\frac{k-18}{4}\right)$$

$$+ F_{A}\left[\operatorname{tr} F_{SU(3)}^{2} + \operatorname{tr} F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr} R^{2}\right] \cdot \left(\frac{k-9}{2}\right)$$

$$+ F_{B}\left[\frac{1}{8}F_{B}^{2} + \frac{1}{48}F_{A}^{2} + \operatorname{tr} F_{SU(3)}^{2} + \operatorname{tr} F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr} R^{2}\right] \cdot \left(\frac{p-q}{2}\right)$$

• For p = q, $U(1)_B$ is omalous, while $U(1)_A$ is always anomalous

Blowup Anomalies

Orbifold: No anomaly Blowup: two U(1)'s, different spectrum \Rightarrow anomaly polynomial $I_6 = \int_X I_{12}$ with backgrounds inserted

$$\Rightarrow l_{6} \sim F_{A}^{3} \cdot \left(\frac{k-6}{12}\right) + F_{A}F_{B}^{2} \cdot \left(\frac{k-18}{4}\right) \\ + F_{A}\left[\operatorname{tr} F_{SU(3)}^{2} + \operatorname{tr} F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr} R^{2}\right] \cdot \left(\frac{k-9}{2}\right) \\ + F_{B}\left[\frac{1}{8}F_{B}^{2} + \frac{1}{48}F_{A}^{2} + \operatorname{tr} F_{SU(3)}^{2} + \operatorname{tr} F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr} R^{2}\right] \cdot \left(\frac{p-q}{2}\right)$$

• For p = q, $U(1)_B$ is omalous, while $U(1)_A$ is always anomalous

 Remnant universality: Coefficients of non-Abelian groups from one *E*₈ are equal, and proportional to gravitational anomaly (only true if one *E*₈ unbroken)

C. Lüdeling (bctp)

Axions β_r shift under $U(1)_{A,B}$ – universal axion does not! $\Rightarrow U(1)_A$ and $U(1)_B$ always massive, even if one of them is omalous:

$$\int_X H_3 \wedge *H_3 = A^I_\mu A^{\mu J} M^2_{IJ} + \cdots, \qquad M^2_{IJ} = V^I_r V^J_s \cdot \int_X E_r \wedge *_6 E_s$$

Mass matrix is positive definite and always rank-two (and depends on the Kähler parameters)

Axions β_r shift under $U(1)_{A,B}$ – universal axion does not! $\Rightarrow U(1)_A$ and $U(1)_B$ always massive, even if one of them is omalous:

$$\int_X H_3 \wedge *H_3 = A^I_\mu A^{\mu J} M^2_{IJ} + \cdots, \qquad M^2_{IJ} = V^I_r V^J_s \cdot \int_X E_r \wedge *_6 E_s$$

Mass matrix is positive definite and always rank-two (and depends on the Kähler parameters)

 \rightarrow Stueckelberg mass possible without anomaly (but not vice versa) Note: Still a coupling of the universal axion to X_4 , as required by supersymmetry

Green-Schwarz Mechanism and Universality

2 Orbifold and Blowup Model

3 Remnant Discrete Symmetries

C. Lüdeling (bctp)

< 🗗 →

Remnant non-*R* symmetries: discrete subgroup of $U(1)_A \times U(1)_B$ which leaves VEVs invariant Blow-up modes:

$$\mathbf{l}_{4,0}\,,\quad \mathbf{1}_{-2,-2}\,,\quad \mathbf{1}_{-2,2}$$

 \Rightarrow discrete remnant $\mathbb{Z}_4\times\mathbb{Z}_4,$ generated by

$$T_{\pm}:\phi_{(q_A,q_B)}\longrightarrow \exp\left\{\frac{2\pi i}{4}\left(q_A\pm q_B\right)\right\}\phi_{(q_A,q_B)}$$

However: Charges of all massless fields are even under both $\mathbb{Z}_4s \rightsquigarrow only \mathbb{Z}_2 \times \mathbb{Z}_2$ realised on massless spectrum

Both \mathbb{Z}_2 factors are omalous

- *R* symmetries do not commute with SUSY $\leftrightarrow \theta$ transforms, and different components of SUSY multiplets have different charges
- Only defined up to mixing with non-R symmetries
- For N = 1 SUSY, only one θ → only one U(1) or Z_N R symmetry otherwise can redefine generators such that only one acts on θ
- Usual convention: θ has charge 1 ⇒ Superpotential W has charge 2
 (~ Z₂ doesn't really count as an R symmetry)

- *R* symmetries do not commute with SUSY $\leftrightarrow \theta$ transforms, and different components of SUSY multiplets have different charges
- Only defined up to mixing with non-R symmetries
- For N = 1 SUSY, only one θ → only one U(1) or Z_N R symmetry otherwise can redefine generators such that only one acts on θ
- Usual convention: θ has charge 1 ⇒ Superpotential W has charge 2
 (~ Z₂ doesn't really count as an R symmetry)
- In compactifications, internal Lorentz transformations treat spinors and scalars differently ~> can lead to R symmetries in 4D
- Orbifolds are special points in moduli space, so expect more symmetries in particular, for general smooth spaces, expect no *R* symmetry in general

R Symmetries from Orbifolds

R transformations from sublattice rotations act as

$$\mathcal{R}: \Phi \longrightarrow e^{2\pi i v R} \Phi$$

where (for Z_3 orbifolds) $v = \left(\frac{1}{3}, 0, 0\right)$, $R = q_{\mathsf{sh}} - \Delta N$

R Symmetries from Orbifolds

 ${\it R}$ transformations from sublattice rotations act as

$$\mathcal{R}: \Phi \longrightarrow e^{2\pi i v R} \Phi$$

where (for Z_3 orbifolds) $v = \left(\frac{1}{3}, 0, 0\right)$, $R = q_{sh} - \Delta N$ Symmetry conventions somewhat tricky:

- For bosons, both v and R quantised in units of $\frac{1}{3}$, so \mathbb{Z}_9 symmetry (i.e. $\mathcal{R}^9 = 1$)
- For fermions, $R^{f} = R^{b} (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, so θ has charge $\frac{1}{6}$ (i.e. \mathbb{Z}_{6} "*R* symmetry")
- Hence: \mathbb{Z}_{18} symmetry with charges for

$$(\mathsf{bosons},\mathsf{fermions}, heta)=rac{1}{18}\left(2n,2n-3,3
ight)$$

• Can redefine charges such that θ has charge 1 and superpotential has charge 2 mod 6, but then fields have non-integer charges

C. Lüdeling (bctp)

< □21 / 27

Our blow-up modes have

$$R = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

Seek unbroken combinations of the three sublattice rotations and $U(1)_{A,B}$:

$$\begin{split} \mathbf{1}_{4,0} &\longrightarrow \mathcal{R}_1^p \, \mathcal{R}_2^q \, \mathcal{R}_3^r \, T_A \, T_B \mathbf{1}_{4,0} = \mathbf{1}_{4,0} \,, \\ \mathbf{1}_{-2,-2} &\longrightarrow \mathcal{R}_1^p \, \mathcal{R}_2^q \, \mathcal{R}_3^r \, T_A \, T_B \mathbf{1}_{-2,-2} = \mathbf{1}_{-2,-2} \,, \\ \mathbf{1}_{-2,2} &\longrightarrow \mathcal{R}_1^p \, \mathcal{R}_2^q \, \mathcal{R}_3^r \, T_A \, T_B \mathbf{1}_{-2,2} = \mathbf{1}_{-2,2} \end{split}$$

However, this implies $p + q + r = 3 \Rightarrow$ only a \mathbb{Z}_2 *R* symmetry survives in blow-up

[Witten '93;Groot Nibbelink '10; Blaszczyk et al. '11] (cf. talk by Fabian Ruehle this afternoon)

Algebraically, describe the orbifold by $(\mathbb{P}^2[3] \text{ is a } T^2)$

$$\frac{\mathbb{P}^2[3] \times \mathbb{P}^2[3] \times \mathbb{P}^2[3]}{\mathbb{Z}_3}$$

Blowup (crepant resolution) in (0,2) GLSM description:

- Introduce extra coordinates (exceptional divisors) and U(1)s
- Geometry given by *F* and *D* term equations, GLSM FI terms become CY Kähler parameters
- Bundle given by "chiral-Fermi" superfields Λ_I with charges determined by the bundle vectors

[Witten '93;Groot Nibbelink '10; Blaszczyk et al. '11] (cf. talk by Fabian Ruehle this afternoon)

Algebraically, describe the orbifold by $(\mathbb{P}^2[3] \text{ is a } T^2)$

$$\frac{\mathbb{P}^2[3] \times \mathbb{P}^2[3] \times \mathbb{P}^2[3]}{\mathbb{Z}_3}$$

Blowup (crepant resolution) in (0,2) GLSM description:

- Introduce extra coordinates (exceptional divisors) and U(1)s
- Geometry given by *F* and *D* term equations, GLSM FI terms become CY Kähler parameters
- Bundle given by "chiral-Fermi" superfields Λ_1 with charges determined by the bundle vectors

 \exists discrete automorphisms of the coordinates which leave F and D terms invariant \rightsquigarrow discrete symmetries – these are R symmetries if holomorphic three-form ω transforms (ω transforms like W, so \mathbb{Z}_2 is invisible)

Two types of R symmetries:

• \mathbb{P}^2 coordinates $z_{i\alpha}$ only appear as $z_{i\alpha}^3$ or $|z_{i\alpha}|^2 \Rightarrow \mathbb{Z}_3$ rotations Presumably broken by deformations of Kähler potential terms (schematically, ϕ_{4d} massless modes in 4d)

$$\int \mathrm{d}^2\theta^+\phi_{4\mathrm{d}}(x^\mu)N(z,x_i)\,\Lambda\overline{\Lambda}$$

Fits with orbifold: Bundle corresponds to blowup

.

Two types of R symmetries:

• \mathbb{P}^2 coordinates $z_{i\alpha}$ only appear as $z_{i\alpha}^3$ or $|z_{i\alpha}|^2 \Rightarrow \mathbb{Z}_3$ rotations Presumably broken by deformations of Kähler potential terms (schematically, ϕ_{4d} massless modes in 4d)

$$\int \mathrm{d}^2\theta^+\phi_{4\mathrm{d}}(x^\mu)N(z,x_i)\,\Lambda\overline{\Lambda}$$

Fits with orbifold: Bundle corresponds to blowup

.

- For certain values of Kähler parameters, permutation symmetries: Group-wise exchanges of exceptional divisors – in orbifold, similar interpretation for equal VEVs
- \Rightarrow Generically, no *R* symmetry (except at most \mathbb{Z}_2), but enhanced at certain loci of parameter space

Green-Schwarz Mechanism and Universality

2 Orbifold and Blowup Model

3 Remnant Discrete Symmetries

C. Lüdeling (bctp)

Conclusions

- Discussed anomalies in 4D low-energy theories from the heterotic string
- Anomalies are generically not universal the orbifold anomalous U(1) is the exception because it is cancelled by the universal axion
- For blowups of heterotic orbifolds, many axions possible

- Discussed anomalies in 4D low-energy theories from the heterotic string
- Anomalies are generically not universal the orbifold anomalous U(1) is the exception because it is cancelled by the universal axion
- For blowups of heterotic orbifolds, many axions possible
- Some rest of universality: Non-Abelian subgroups of one E_8 have universal coefficients (but for SU(5), this is before doublet-triplet splitting)
- Line bundles do reduce the rank via the axion shift also omalous U(1)s can become massive
- Blow-ups can leave gauged discrete subgroups unbroken important for phenomenology
- On orbifold, R symmetries exist but are broken by the blow-up

- Found nice agreement between orbifold and blow-up picture, up to some subtleties
- "Geometry part" of GLSM generically has many "unbreakable" *R*-like symmetries – seem to be broken by the bundle, but better understanding of their breaking required
- Linked to determination of charged massless spectrum
- Different non-generic type of *R* symmetries: Exchange symmetries, appearing for certain loci in Kähler moduli space, e.g. exchange of exceptional divisors if their volumes are equal
- Study these symmetries for more realistic models, including Wilson lines etc.