Fixing D7 Branes by Fluxes in F–Theory

Christoph Lüdeling ITP, Universität Heidelberg

based on:

work in progress with A. Braun, A. Hebecker and R. Valandro and A. Braun, A. Hebecker, H. Triendl [arXiv:0801.2163]

Bonn, July 8, 2008 1 / 32

- Type IIB orientifolds are one of the best-understood string setups (e.g for moduli stabilisation, warped compactifications and hierarchies, string cosmology)
- Drawback: Particle physics model building not very explicit yet, as opposed to e.g. heterotic orbifolds
- Aim: Develop tools for model building, in particular configurations of D7 branes their stabilisation
- Appropriate framework: F-Theory

[Vafa;Sen]

< A >

• Simplest example: $K3 \times K3$

- 2 Geometrical Picture of D7 Brane Motion
- **3** Moduli Stabilisation by Fluxes
- **4** Conclusions and Outlook

< A →

Consider Type IIB compactifications (on manifold B) with D7-branes (8dim obj).

- D7 is charged under the axiodilation $\Rightarrow \tau = C_0 + ie^{\phi}$ has non-trivial monodromy T when going around a D7.
- T is one of the two generators of $SL(2, \mathbb{Z})$ -sym group of IIB:

 $\left. \begin{array}{l} T: \quad \tau \mapsto \tau + 1 \\ S: \quad \tau \mapsto -\frac{1}{\tau} \end{array} \right\} \Rightarrow \text{ similar to torus complex structure}$

 \rightsquigarrow interpret axiodilaton as complex structure of axiliary torus

- O7 planes: Monodromy (fibre involution) \cdot T^{-4}
- τ is a field varying over $B \Rightarrow$ one torus (elliptic curve) for each point of $B \Rightarrow$ Elliptic fibration over the base B: manifold Y_8 .

F-Theory and Type IIB

Working definition: F-theory: 12d theory compactified on elliptically fibred manifold Y_8 resulting in type IIB on the base B, i.e. the two additional dimensions are auxiliary

F-theory background: both geometric background (B) and D7 positions are encoded in geometry of Y_8 .

• At the brane positions, $\tau \rightarrow i\infty$:

 \Rightarrow The D7's are at points of *B* where fibre degenerates \Rightarrow Stacks of branes: Singularities of Y_8

- F-theory allows to automatically include obstructions on D7 motions, without extra constraints. [Braun,Hebecker,Triendl]
- In the following, we concentrate on the weak coupling limit, where some complication do not occur [Sen]

Consider type IIB on $\mathbb{R}^{1,7} \times T^2$, orientifolded by $(-1)^F \Omega_p \sigma$, where

 $\sigma: z \mapsto -z$ is the involution of the T^2

- 4 singularities of T^2/\mathbb{Z}_2 = four O7 planes
- Each O7 carries four D7's. \Rightarrow Gauge group $SO(8)^4$.
- F-theory background: T² fibration over CP¹ = S² (K3) with four SO(8)-singularities where the fibre degenerates.
- O7 planes have monodromy T^{-4} , so axiodilaton is constant
- If we move some D7, the fibration changes, and we get a different gauge group

For calculations, it is advantageous to consider duality between F- and M-theory:

- Consider M-theory on $CY_3 \times T^2$ (\rightsquigarrow 3d effective theory)
- Compactification on one S^1 gives type IIA on $\operatorname{CY}_3 imes S^1_A$
- T duality along the S^1_A gets us to type IIB on CY₃ \times S^1_B with inverse radius, $R_B = 1/R_A$
- In the limit of $R_B \rightarrow \infty$, we recover type IIB on CY₃, i.e. four flat dimensions \rightsquigarrow F-theory on the M-theory side, this means taking the torus volume to vanish
- Hence, we can think of F-theory as being dual to M-theory on an elliptically fibred CY four-fold with vanishing fibre volume

[Vafa;Schwarz;Aspinwall;Gukov,Vafa,Witten]

Straightforward map of moduli spaces on both sides: Moduli space of Y_8 , excluding the fibre volume

 \Rightarrow We can use the M-theory language to investigate F-theory!

For moduli stabilisation by fluxes, the procedure is:

- Take F-theory background and add type IIB fluxes (G_3 and F_2)
- Map to M-theory (G_4 flux), minimise the moduli potential
- Map back to F-theory

2 Geometrical Picture of D7 Brane Motion

3 Moduli Stabilisation by Fluxes

< A →

- Gauge enhancement occurs on brane stacks, i.e. when branes move on top of each other
- Single branes induce singularities of the fibration, stacks of branes cause singularities of the compactification space
- Singularities can be classified by ADE type
 → ADE gauge groups, i.e. SU(k), SO(2k), E₆, E₇, E₈
- Brane distane can be measured by volume of certain cycles between the branes
- $\Rightarrow\,$ Stacks occur when these cycles shrink to zero size

Remarks on K3

- Only Calabi-Yau two-fold (i.e. four real dimensions)
- $H^2(K3,\mathbb{R})$ is a 22-dim space. The intersection metric is

$$M(\mathbf{v},\mathbf{w}) \equiv \int_{K3} \mathbf{v} \wedge \mathbf{w} \qquad \frown \qquad H^2(K3,\mathbb{R}) \cong \mathbb{R}^{3,19}$$

• Hyperkähler manifold: Kähler form j and holomorphic two-form ω fixed by three timelike two-forms ω_i , $M(\omega_i, \omega_j) = \delta_{ij}$ and the overall volume ν via

$$\omega = \omega_1 + \mathrm{i}\omega_2 \,, \qquad \qquad j = \sqrt{2\nu}\,\omega_3$$

- Metric is invariant under SO(3) rotation of the ω_i
- \Rightarrow Geometry given by timelike 3-plane $\langle \omega_i
 angle \in \mathbb{R}^{3,19}$
- \Rightarrow Volume of any cycle is measured by projection on the three-plane (times $\sqrt{\nu})$

K3: Cycles

• We can choose an integral basis of $H^2(K3,\mathbb{R})$ such that

$$M = U \oplus U \oplus U \oplus (-E_8) \oplus (-E_8) \;, \quad ext{where} \; \; U = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$

- The U blocks contain the timelike directions → the ω_i need to have components in these blocks
- Elliptically fibred K3: Require integral cycles B and F (base and fibre)

• with intersection matrix $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$, equivalent to a U block

• and
$$M(B,\omega) = M(F,\omega) = 0$$

- \Rightarrow One ω_i must be entirely in this U block, two \perp to it
- \Rightarrow Remaining freedom: Two-plane in $\mathbb{R}^{2,18}$

Cycles between D-Branes on T^2/\mathbb{Z}_2

- One leg in the base, one in the fibre torus
- Monodromy $\tau \to \tau + 1$ twists fibre leg when going around a D-brane
- They are topologically a sphere \leftrightarrow self-intersection -2.

< A →

Intersections, O7 Planes

• These cycles can be collapsed to a line in the base:

- Two cycles meeting at a brane have intersection 1
- O7 plane monodromy includes involution of the fibre, hence two cycles encircling an O7 plane (×) do not intersect:

Shrinking Cycles and Gauge Enhancement

Intersection matrix of shrinking cycles determines gauge group: Consider e.g. orientifold: One O7, four D7s

 \Rightarrow Cartan matrix of SO(8): If these cycles shrink to zero size, the resulting gauge group will be SO(8)

Note: Only cycles with self-intersection -2 produce singularities when shrinking

Complex structure ω can be expanded in the vectors E_I and e^i , e_i of the $E_8 \times E_8$ and U-blocks with coefficients $W_I = W_I^1 + uW_I^2$, u, s

• Cf. Wilson line breaking in heterotic theory: W^1 , W^2 act like Wilson lines on a T^2 , i.e. one-to-one correspondence between surviving roots and shrinking cycles

• Take
$$W^1 = (0^4, \frac{1}{2}^4, 0^4, \frac{1}{2}^4)$$
, $W^2 = (1, 0^7, 1, 0^7)$

- $\Rightarrow\,$ 16 shrinking cycles in 4 sets, each with intersection matrix D_4
- \Rightarrow SO(8)⁴ singularity

By chosing new basis elements α and β , we can give an expansion of ω adapted to the $SO(8)^4$ point:

$$\omega = \frac{\alpha}{2} + u e_2 + s \frac{\beta}{2} - \left(u s - \frac{z^2}{2}\right) e_1 + z_I \hat{E}_I$$

- $z_I \rightarrow$ brane positions, $z_I = 0$ is SO(8) point
- *u* and *s*: Complex structure of base, i.e. position of O7's and (constant) axiodilaton
- s: Complex structure of fibre torus, i.e. axiodilaton

 \hookrightarrow Explicit mapping between ω and the positions of the branes.

1 F-Theory

2 Geometrical Picture of D7 Brane Motion

3 Moduli Stabilisation by Fluxes

< A →

Fluxes

To fix a certain D7 configuration, we want to stabilise the corresponding point in moduli space by fluxes:

- Fluxes: Background values of *p*-form field strengths
- In type IIB, there are
 - three-form flux G_3 on the whole space
 - two-form flux F_2 of brane gauge theories
- In F-theory, these are combined into four-form flux G_4 (from M-theory)
- Consistency conditions on flux choice:
 - Flux quantisation requires flux to be integral
 - Tadpole cancellation condition

$$\int_M G_4 \wedge G_4 \leq \frac{\chi}{24}$$

Fluxes on $K3 \times K3$

- Aim: determine explicitly the flux stabilizing a desired D7 configuration.
- The first example we study is Y = K3 × K3 [Lüst,Mayr,Reffert,Stieberger; Görlich,Kachru,Tripathy,Trivedi; Aspinwall,Kallosh; Dasgupta,Rajesh,Sethi]
- Toy model (no intersections, hence no chiral matter)
- To find the moduli potential we use the language of M-theory and then we map back the results
- M-theory on K3 × K3: four-form flux G = G^{IΛ}η_I ∧ η̃_Λ with two legs on each K3 (because of 4d Lorentz invariance)

 \hookrightarrow We can associate with G two homomorphisms:

$$G: H^2(K3) \to H^2(\widetilde{K3}) \qquad G^a: H^2(\widetilde{K3}) \to H^2(K3)$$

where G^a is defined by $M[w, G^a \tilde{v}] = \widetilde{M}[G w, \tilde{v}]$.

< A →

Flux Potential on $K3 \times K3$

Same starting point as [Haack,Louis]:

$$V = \frac{1}{4\mathcal{V}^3} \left(\int_{\mathcal{K}_3 \times \widetilde{\mathcal{K}_3}} G \wedge *G - \frac{I_M^6 \chi}{12} \right)$$

- \mathcal{V} : Overall volume of $K3 \times K3$
- V depends on the metric moduli:
 - Metric is fixed by ω_i and ω_j (up to SO(3) rotations), plus the two volumes
 - Inequivalent $\{\omega_i\}$ are given by different way of putting a 3-plane into $\mathbb{R}^{3,19} \to 57$ moduli
 - Total number of moduli is $2 \times (57 + 1)$ $(\delta \omega_i, \delta \tilde{\omega}_j, \nu, \tilde{\nu})$
- $K3 \times K3$ is not a proper CY_4 , so some differences

Flux Potential on $K3 \times K3$

Flux potential in terms of the ω_i , $\tilde{\omega}_i$ and volumes:

$$V = -\frac{1}{2(\nu \cdot \widetilde{\nu})^3} \left(\sum_j \|G \, \widetilde{\omega}_j\|_{\perp}^2 + \sum_i \|G^a \omega_i\|_{\widetilde{\perp}}^2 \right)$$

Here $\|v\|_{\perp}^2 = \|(v - \sum_i (v \cdot \omega_i) \omega_i)\|^2$ is the norm of the part of v orthogonal to the three-plane

- Positive definite potential
- Manifestly symmetric under SO(3)
- Minima at V = 0:

$$G\,\tilde{\omega}_j \in \langle \omega_1, \omega_2, \omega_3 \rangle \qquad G^a \omega_i \in \langle \tilde{\omega}_1, \tilde{\omega}_2, \tilde{\omega}_3 \rangle$$

• ν and $\tilde{\nu}$ are unfixed, flat directions (when V = 0)

Existence of V = 0 Minima

There exist a minimum iff \exists changes of bases $P, \tilde{P} \in SO(3, 19)$ s.t.

$$P^{-1}G\widetilde{P} = G_d \equiv \left(egin{array}{cc} a_3 & 0 \ 0 & c_{19} \end{array}
ight)$$

 a_3 and c_{19} diagonal matrices with eigenvalues a_i, c_q .

- The first 3 vectors of the new bases are +-norm and orthogonal. We call them ω_i and ω_j.
- $\tilde{\omega}_j$ are mapped to ω_i by G and vice versa.
- Not every matrix is diagonalizable by two SO(n, m) transformations:

G bi-diagonalisable $\iff G^a G$ is diagonalisable with all $\lambda_i > 0$.

 \hookrightarrow There are fluxes that give V > 0 without points where V = 0!

Flat Directions?

Assume $\{\omega_i, \tilde{\omega}_j\}$ is absolute minimum of the potential \rightsquigarrow are all moduli stabilised? $\{\omega_i, \tilde{\omega}_j\}$ isolated minimum $\Leftrightarrow \not\exists$ continuous deformations $\{\delta\omega_i, \delta\tilde{\omega}_j\}$ s.t.

$$G\left(\tilde{\omega}_{j}+\delta\tilde{\omega}_{j}\right)\in\left\langle \left(\omega_{i}+\delta\omega_{i}\right)\right\rangle \qquad G^{*}\left(\omega_{i}+\delta\omega_{i}\right)\in\left\langle \left(\tilde{\omega}_{j}+\delta\tilde{\omega}_{j}\right)\right\rangle$$

Define $\delta \tilde{\omega}_j = \tilde{\beta}_j^q \tilde{u}_q$ and $\delta \omega_i = \beta_i^p u_p$ (with \tilde{u}, u orthogonal to $\tilde{\omega}_j, \omega_i$).

$$G\left(\tilde{\omega}_{k}+\delta\tilde{\omega}_{k}\right)=a_{i}(\omega_{i}+\delta\omega_{i})+\left(c_{p}\tilde{\beta}_{k}^{p}-a_{k}\beta_{i}^{p}\right)u_{p}$$
$$G^{a}(\omega_{h}+\delta\omega_{h})=a_{h}(\tilde{\omega}_{j}+\delta\tilde{\omega}_{j})+\left(c_{q}\beta_{k}^{q}-a_{h}\tilde{\beta}_{j}^{q}\right)\tilde{u}_{q}$$

Complicated linear system!

Flat Directions?

Can be rewritten in matrix form as

Isolated minimum requires the determinant of this matrix to vanish. By determinant condensation, this is equivalent to the condition that $\nexists(i, q)$ such that $a_i = c_q$:

 \Rightarrow If $a_i \neq c_q \ \forall i, q$, then all the moduli (except $\nu, \tilde{\nu}$) are stabilised!

(Non-)Supersymmetric Minima

• A vacuum is supersymmetric if G is [Becker-Becker]

- primitive wrt $J = j + \tilde{j}$, i.e. $J \wedge G = 0$
- (2,2) wrt to the c.s. $\Omega = \omega \wedge \tilde{\omega}$, i.e. $\Omega \wedge G = 0$
- This translates into the conditions:

•
$$G \tilde{\omega}_3 = 0$$
 and $G^a \omega_3 = 0 \Rightarrow a_3 = 0;$

•
$$\omega \cdot G \, \tilde{\omega} = 0 \Rightarrow a_1 = a_2.$$

Minima at V = 0 can be:

•
$$\mathcal{N} = 2$$
 when $a_1 = a_2 = a_3 = 0$;

•
$$\mathcal{N} = 1$$
 when $a_3 = 0$ and $a_1 = a_2 \neq 0$;

N = 0 otherwise.

We use the M-th language to fix moduli by fluxes. To apply this to F-theory, we require:

- K3 must be elliptically fibred.
- Three-form flux G_3 and two-form fluxes F_2 in F-th: 4-form flux G in M-theory with one leg on the fibre and one on the base of $\widetilde{K3}$.

In M-theory this translates to putting zero flux on one U-block.

Then:

- $\widetilde{K3}$ is fixed to be elliptically fibered, with fibre and base in the *U*-block.
- the size of the fibre is not fixed (modulus in M-theory, but not in F-theory): we can do the F-theory limit.
- One modulus of lower K3 remains unfixed

Symmetry Breaking by Fluxes

- *U*(1) fluxes in brane gauge theory can break gauge groups (but preserve rank)
- Fixing moduli can break Cartan generators: Fixed scalar modulus becomes component of 4d gauge field in F-theory limit
- Consistent with IIB analysis: Kähler moduli get charged, stabilisation induces anomaly which breaks the U(1)

[Haack,Krefl,Lüst,van Proeyen,Zagermann]

- We can engineer desired subgroup of the group inferred form the singularities alone
- Work in progress...

Aim: find the flux that fixes a given configuration of branes.

- Positions of branes encoded in the c.s. $\tilde{\omega}$ of $\tilde{K3}$.
- Gauge enhancement ↔ brane stacks ↔ shrunken cycles ↔
 G has block-diagonal structure
- Method:
- Choose basis of cycles to shrink \Rightarrow determines block-diagonal structure
- In blocks, find matrices with different positive eigenvalues in positive and negative norm subspaces

Bonn, July 8, 2008 29 / 32

The flux is subject to strong constraints:

- Positive eigenvalues (to have a minimum)
- Integrality $G^{I\Lambda} \in \mathbb{Z}$
- Tadpole cancellation $\frac{1}{2} \int G \wedge G = \frac{1}{2} \operatorname{tr} G^a G = \frac{\chi}{24} = 24$

The last two constraints pose the hardest problem, since tr G^aG is generically too large, and we need to scan a large number of matrices.

Can stabilise $SO(8)^4$ point, and we can move branes off their stacks, i.e. get $SO(6) \times U(1) \times SO(8)^3$, $SO(4) \times SU(2) \times SO(8)^3$.

1 F-Theory

2 Geometrical Picture of D7 Brane Motion

3 Moduli Stabilisation by Fluxes

< A →

Conclusions

- We have a nice geometric picture of D7 brane motion
- We studied the stablilisation of D7 configurations by fluxes in M-theory
- We found explicit conditions for the existence of minima and absence of flat directions
- Translation to F-theory \Rightarrow recipe to find fluxes that stabilise a desired situation
- Open problem: Numerical scan of matrices is very time-consuming
- Outlook: Generalise to elliptically fibred four-folds to get physically more realistic models (intersecting branes, chiral fermions, ...)