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e Type IIB orientifolds are one of the best-understood string
setups (e.g for moduli stabilisation, warped compactifications
and hierarchies, string cosmology)

e Drawback: Particle physics model building not very explicit yet,
as opposed to e.g. heterotic orbifolds

e Aim: Develop tools for model building, in particular
configurations of D7 branes their stabilisation

o Appropriate framework: F-Theory [Vafa;Sen]

e Simplest example: K3 x K3
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@ F-Theory
@® Geometrical Picture of D7 Brane Motion
© Moduli Stabilisation by Fluxes

@ Conclusions and Outlook
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Consider Type 1B compactifications (on manifold B) with
D7-branes (8dim obj).
e D7 is charged under the axiodilation = 7 = C; + ie® has
non-trivial monodromy T when going around a D7.

e T is one of the two generators of SL(2,7Z)-sym group of IIB:

P | } = similar to torus complex structure

~> interpret axiodilaton as complex structure of axiliary torus
e O7 planes: Monodromy (fibre involution) - T—*

e 7 is a field varying over B = one torus (elliptic curve) for each
point of B = Elliptic fibration over the base B: manifold Ys.
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Working definition: F-theory: 12d theory compactified on elliptically
fibred manifold Yg resulting in type IIB on the base B, i.e. the two
additional dimensions are auxiliary

F-theory background: both geometric background (B) and D7
positions are encoded in geometry of Y;.

e At the brane positions, 7 — joo:
= The D7's are at points of B where fibre degenerates
= Stacks of branes: Singularities of Yj

e F-theory allows to automatically include obstructions on D7
motions, without extra constraints. [Braun,Hebecker, TriendI]

¢ In the following, we concentrate on the weak coupling limit,
where some complication do not occur [Sen]
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Consider type 1B on R*" x T2, orientifolded by (—1)FQ,0, where

O:Z+— —Z is the involution of the T2

4 singularities of T2/Z, = four O7 planes
Each O7 carries four D7's. = Gauge group SO(8)*.

F-theory background: T? fibration over CP' = S? (K3)
with four SO(8)-singularities where the the fibre degenerates.

O7 planes have monodromy T~*, so axiodilaton is constant

If we move some D7, the fibration changes, and we get a
different gauge group
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For calculations, it is advantageous to consider duality between F-
and M-theory:
e Consider M-theory on CY3 x T2 (~ 3d effective theory)
e Compactification on one S gives type 1A on CY3 x S}
e T duality along the S} gets us to type IIB on CY3 x S} with
inverse radius, Rg = 1/Rx

e In the limit of Rg — o0, we recover type IIB on CY3, i.e. four
flat dimensions ~~ F-theory — on the M-theory side, this
means taking the torus volume to vanish

e Hence, we can think of F-theory as being dual to M-theory on
an elliptically fibred CY four-fold with vanishing fibre volume
[Vafa;Schwarz; Aspinwall;Gukov,Vafa, Witten]
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Straightforward map of moduli spaces on both sides:
Moduli space of Yg, excluding the fibre volume

= We can use the M-theory language to investigate F-theory!

For moduli stabilisation by fluxes, the procedure is:
e Take F-theory background and add type IIB fluxes (G3 and F)

e Map to M-theory (G4 flux), minimise the moduli potential
e Map back to F-theory
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@® Geometrical Picture of D7 Brane Motion
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e Gauge enhancement occurs on brane stacks, i.e. when branes
move on top of each other

e Single branes induce singularities of the fibration, stacks of
branes cause singularities of the compactification space

e Singularities can be classified by ADE type
~» ADE gauge groups, i.e. SU(k), SO(2k), Es, E7, Eg

e Brane distane can be measured by volume of certain cycles
between the branes

= Stacks occur when these cycles shrink to zero size
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e Only Calabi-Yau two-fold (i.e. four real dimensions)
e H?(K3,R) is a 22-dim space. The intersection metric is

Y

M(v,w) = / vAw N H?*(K3,R) = R**
K3

e Hyperkahler manifold: Kahler form j and holomorphic two-form
w fixed by three timelike two-forms w;, M(w;,w;) = d0;; and the
overall volume v via

w=uwi+iws, J=V2rws
e Metric is invariant under SO(3) rotation of the w;
Geometry given by timelike 3-plane (w;) € R>1°

Volume of any cycle is measured by projection on the
three-plane (times /)
(=3
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e We can choose an integral basis of H?(K3, R) such that

M=UU®U®(~E)®(~E), where U= <(1) (1)>

e The U blocks contain the timelike directions ~ the w; need to
have components in these blocks

e Elliptically fibred K3: Require integral cycles B and F (base
and fibre)

oy : . 1 .
e with intersection matrix 1 0), equivalent to a U block

e and M(B,w) = M(F,w) =0
= One w; must be entirely in this U block, two L to it
= Remaining freedom: Two-plane in R%18
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e One leg in the base, one in the fibre torus
e Monodromy 7 — 7 + 1 twists fibre leg when going around a

D-brane
e They are topologically a sphere < self-intersection —2.
' C. Liideling (ITP, Universitit Heidelberg) Bonn, July 8, 2008

[Braun,Hebecker, Triendl]
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e These cycles can be collapsed to a line in the base:

N
»

| _ /
>

e Two cycles meeting at a brane have intersection 1

e O7 plane monodromy includes involution of the fibre, hence
two cycles encircling an O7 plane (X) do not intersect:

-1 +1
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Intersection matrix of shrinking cycles determines gauge group:
Consider e.g. orientifold: One O7, four D7s

3
2 1
@ @
-2 1 0 0
2 _ _ -2 1 1
> Intersection matrix 0 1 -2 0

0 1 0 =2

= Cartan matrix of SO(8): If these cycles shrink to zero size, the
resulting gauge group will be SO(8)

Note: Only cycles with self-intersection -2 produce singularities

when shrinking
(=3
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Complex structure w can be expanded in the vectors £, and €', e; of
the Eg x Eg and U-blocks with coefficients W, = W} + uW?, u, s

e Cf. Wilson line breaking in heterotic theory: W?!, W? act like
Wilson lines on a T2, i.e. one-to-one correspondence between
surviving roots and shrinking cycles

o Take W' = (0% 1* 0% %), W2 = (1,07,1,0")

)
= 16 shrinking cycles in 4 sets, each with intersection matrix D,

= S0(8)* singularity
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By chosing new basis elements a and 3, we can give an expansion
of w adapted to the SO(8)* point:

a 6] z° A
w:§+ue2+s§—(us—?) el“‘Z[E[

e z; — brane positions, z; = 0 is SO(8) point
e u and s: Complex structure of base, i.e. position of O7's and
(constant) axiodilaton

e s: Complex structure of fibre torus, i.e. axiodilaton

— Explicit mapping between w and the positions of the branes. )
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© Moduli Stabilisation by Fluxes
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To fix a certain D7 configuration, we want to stabilise the
corresponding point in moduli space by fluxes:
e Fluxes: Background values of p-form field strengths
e In type |IB, there are

o three-form flux Gz on the whole space
o two-form flux F» of brane gauge theories

e In F-theory, these are combined into four-form flux G4 (from
M-theory)

e Consistency conditions on flux choice:

e Flux quantisation requires flux to be integral
e Tadpole cancellation condition

X

Ga N Gy < =

/M 24
&
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e Aim: determine explicitly the flux stabilizing a desired D7
configuration.

e The first example we study is Y = K3 x K3
[Liist,Mayr,Reffert,Stieberger; Gérlich,Kachru, Tripathy, Trivedi; Aspinwall,Kallosh;
Dasgupta,Rajesh,Sethi]

e Toy model (no intersections, hence no chiral matter)

e To find the moduli potential we use the language of M-theory
and then we map back the results

e M-theory on K3 x K3: four-form flux G = G, A iy with two
legs on each K3 (because of 4d Lorentz invariance)
< WWe can associate with G two homomorphisms:

G: H*(K3) — H*(K3)  G?: H*(K3) — H*(K3)

where G? is defined by M[w, G*V] = M[G w, 7].
(=3
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Same starting point as [HaackLouis]:

1 18 x
V=" GA*G— M=
4V3 (/K3><R§ ’ 12)

e V: Overall volume of K3 x K3
e V depends on the metric moduli:
e Metric is fixed by w; and @; (up to SO(3) rotations), plus the
two volumes
e Inequivalent {w;} are given by different way of putting a
3-plane into R31% — 57 moduli
e Total number of moduliis 2 x (57 + 1) (dw;,d@;,v,7)

e K3 x K3 is not a proper CYy, so some differences
=3
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Flux potential in terms of the w;, ©; and volumes:

1 ~ 112 a 2
V= —m (2}: ||ij||J_+zi:”G w;||1>

Here [[v]2 = [|(v — 32, (v - wi)wi)||” is the norm of the part of v
orthogonal to the three-plane

e Positive definite potential
e Manifestly symmetric under SO(3)
e Minima at V =0:

G(.Z)j € (wl,wg,w3) Gaw; € <L'D1,&')2,&')3> J

e v and v are unfixed, flat directions (when V = 0)
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There exist a minimum iff 3 changes of bases P, P € S50(3,19) s.t.

e 0
PlGP:GdE<a3 )

0 Ci9

a3 and cyg diagonal matrices with eigenvalues a;, c,.

e The first 3 vectors of the new bases are +-norm and
orthogonal. We call them w; and &;.

e {; are mapped to w; by G and vice versa.

¢ Not every matrix is diagonalizable by two SO(n, m)
transformations:

G bi-diagonalisable <= G?G is diagonalisable with all \; > 0. )

< There are fluxes that give V > 0 without points where V = 0! .
" C. Liideling (ITP, Universitit Heidelberg) Bonn, July 8, 2008 23 / 32



Assume {w;, @;} is absolute minimum of the potential ~~ are all
moduli stabilised?

{wi, @;} isolated minimum < A continuous deformations {dw;, 0&; }
s.t.
G (C:)J + &IJJ) € ((w,- + 5w,—)> Ga(w,- + 5(4),') € <(Q~JJ + (S(IJJ»

Define 6&; = Bj’ﬂq and dw; = B;Pu, (with T, u orthogonal to @;, w;).

G ((I)k + 5(:);() = a,-(w,- + 50),’) + (Cpﬁk p_ akﬁ,-”) Llp
Ga(wh + 5wh) = ah(&j + &I)J) + (Cqﬁkq - ath q) flq

Complicated linear system!
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Can be rewritten in matrix form as

Ci9 \ b1

Ci9 —az ® g >

C19 03
C19 51
—az ® 19 Ci9 Ba
C19 03

Isolated minimum requires the determinant of this matrix to vanish.
By determinant condensation, this is equivalent to the condition
that A(/, q) such that a; = cg:

= If a; # ¢4 Vi, q, then all the moduli (except v, /) are stabilised! J
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e A vacuum is supersymmetric if G is  [Becker-Becker]
e primitivewrt J=j+/, ie. JAG=0
e (22)wrttothecs. Q=wA®,ie. QNG =0
e This translates into the conditions:
° G&'J3=03nd GQW3:0:>33:0;
e w-Gw=0= a; = a.

Minima at V = 0 can be:
e N =2whena; =a,=a;=0;
e V=1 when a3 =0 and a; = a, # 0;
e N = 0 otherwise.

=

¢ Todsiing (175, Universicst Heidalbarg) | o, 6 B



We use the M-th language to fix moduli by fluxes. To apply this to
F-theory, we require:
e K3 must be elliptically fibred.
e Three-form flux Gz and two-form fluxes F, in F-th: 4-form flux
G in M-theory with one leg on the fibre and one on the base of
K3.
In M-theory this translates to putting zero flux on one U-block.
Then:
o K3 is fixed to be elliptically fibered, with fibre and base in the
U-block.
e the size of the fibre is not fixed (modulus in M-theory, but not
in F-theory): we can do the F-theory limit.

e One modulus of lower K3 remains unfixed
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e U(1) fluxes in brane gauge theory can break gauge groups (but
preserve rank)

e Fixing moduli can break Cartan generators: Fixed scalar
modulus becomes component of 4d gauge field in F-theory limit

e Consistent with 1B analysis: Kahler moduli get charged,
stabilisation induces anomaly which breaks the U(1)
[Haack,Krefl,Liist,van Proeyen,Zagermann]
e We can engineer desired subgroup of the group inferred form
the singularities alone

e Work in progress...
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Aim: find the flux that fixes a given configuration of branes.
Positions of branes encoded in the c.s. & of K3.

Gauge enhancement < brane stacks «» shrunken cycles <
G has block-diagonal structure

Method:

Choose basis of cycles to shrink = determines block-diagonal
structure

In blocks, find matrices with different positive eigenvalues in
positive and negative norm subspaces
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The flux is subject to strong constraints:

e Positive eigenvalues (to have a minimum)

e Integrality G'" € Z

e Tadpole cancellation 2 [ GA G =1trG°G = X =24
The last two constraints pose the hardest problem, since tr G?G is
generically too large, and we need to scan a large number of
matrices.

Can stabilise SO(8)* point, and we can move branes off their stacks,
i.e. get SO(6) x U(1) x SO(8)3, SO(4) x SU(2) x SO(8)* .
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@ Conclusions and Outlook
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e We have a nice geometric picture of D7 brane motion

e We studied the stablilisation of D7 configurations by fluxes in
M-theory

e We found explicit conditions for the existence of minima and
absence of flat directions

e Translation to F-theory = recipe to find fluxes that stabilise a
desired situation

e Open problem: Numerical scan of matrices is very
time—consuming

e Outlook: Generalise to elliptically fibred four-folds to get
physically more realistic models (intersecting branes, chiral
fermions, ...)
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