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Motivation

• Type IIB orientifolds are one of the best-understood string
setups (e.g for moduli stabilisation, warped compactifications
and hierarchies, string cosmology)

• Drawback: Particle physics model building not very explicit yet,
as opposed to e.g. heterotic orbifolds

• Aim: Develop tools for model building, in particular
configurations of D7 branes their stabilisation

• Appropriate framework: F-Theory [Vafa;Sen]

• Simplest example: K3 × K3
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F-Theory and Type IIB

Consider Type IIB compactifications (on manifold B) with
D7-branes (8dim obj).

• D7 is charged under the axiodilation ⇒ τ = C0 + ieφ has
non-trivial monodromy T when going around a D7.

• T is one of the two generators of SL(2, Z)-sym group of IIB:

T : τ 7→ τ + 1
S : τ 7→ − 1

τ

}
⇒ similar to torus complex structure

 interpret axiodilaton as complex structure of axiliary torus

• O7 planes: Monodromy (fibre involution) · T−4

• τ is a field varying over B ⇒ one torus (elliptic curve) for each
point of B ⇒ Elliptic fibration over the base B : manifold Y8.
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F-Theory and Type IIB

Working definition: F-theory: 12d theory compactified on elliptically
fibred manifold Y8 resulting in type IIB on the base B , i.e. the two
additional dimensions are auxiliary

F-theory background: both geometric background (B) and D7
positions are encoded in geometry of Y8.

• At the brane positions, τ → i∞:
⇒ The D7’s are at points of B where fibre degenerates
⇒ Stacks of branes: Singularities of Y8

• F-theory allows to automatically include obstructions on D7
motions, without extra constraints. [Braun,Hebecker,Triendl]

• In the following, we concentrate on the weak coupling limit,
where some complication do not occur [Sen]
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Example: Type IIB Orientifold on R1,7 × T 2/Z2

Consider type IIB on R1,7 × T 2, orientifolded by (−1)FΩpσ, where

σ : z 7→ −z is the involution of the T 2

• 4 singularities of T 2/Z2 = four O7 planes

• Each O7 carries four D7’s. ⇒ Gauge group SO(8)4.

• F-theory background: T 2 fibration over CP
1 = S2 (K3)

with four SO(8)-singularities where the the fibre degenerates.

• O7 planes have monodromy T−4, so axiodilaton is constant

• If we move some D7, the fibration changes, and we get a
different gauge group
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F-Theory/M-Theory Duality

For calculations, it is advantageous to consider duality between F-
and M-theory:

• Consider M-theory on CY3 × T 2 ( 3d effective theory)

• Compactification on one S1 gives type IIA on CY3 × S1
A

• T duality along the S1
A gets us to type IIB on CY3 × S1

B with
inverse radius, RB = 1/RA

• In the limit of RB → ∞, we recover type IIB on CY3, i.e. four
flat dimensions  F-theory — on the M-theory side, this
means taking the torus volume to vanish

• Hence, we can think of F-theory as being dual to M-theory on
an elliptically fibred CY four-fold with vanishing fibre volume

[Vafa;Schwarz;Aspinwall;Gukov,Vafa,Witten]
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F-Theory/M-Theory Duality

Straightforward map of moduli spaces on both sides:
Moduli space of Y8, excluding the fibre volume

⇒ We can use the M-theory language to investigate F-theory!

For moduli stabilisation by fluxes, the procedure is:

• Take F-theory background and add type IIB fluxes (G3 and F2)

• Map to M-theory (G4 flux), minimise the moduli potential

• Map back to F-theory
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And now for...

1 F-Theory

2 Geometrical Picture of D7 Brane Motion

3 Moduli Stabilisation by Fluxes

4 Conclusions and Outlook
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Branes and Cycles

• Gauge enhancement occurs on brane stacks, i.e. when branes
move on top of each other

• Single branes induce singularities of the fibration, stacks of
branes cause singularities of the compactification space

• Singularities can be classified by ADE type
 ADE gauge groups, i.e. SU(k), SO(2k), E6, E7, E8

• Brane distane can be measured by volume of certain cycles
between the branes

⇒ Stacks occur when these cycles shrink to zero size
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Remarks on K3

• Only Calabi–Yau two-fold (i.e. four real dimensions)

• H2(K3, R) is a 22-dim space. The intersection metric is

M(v , w) ≡
∫

K3

v ∧ w y H2(K3, R) ∼= R3,19

• Hyperkähler manifold: Kähler form j and holomorphic two-form
ω fixed by three timelike two-forms ωi , M(ωi , ωj) = δij and the
overall volume ν via

ω = ω1 + iω2 , j =
√

2ν ω3

• Metric is invariant under SO(3) rotation of the ωi

⇒ Geometry given by timelike 3-plane 〈ωi〉 ∈ R3,19

⇒ Volume of any cycle is measured by projection on the
three-plane (times

√
ν)
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K3: Cycles

• We can choose an integral basis of H2(K3, R) such that

M = U ⊕ U ⊕ U ⊕ (−E8) ⊕ (−E8) , where U =

(
0 1
1 0

)

• The U blocks contain the timelike directions  the ωi need to
have components in these blocks

• Elliptically fibred K3: Require integral cycles B and F (base
and fibre)

• with intersection matrix

(
−2 1
1 0

)
, equivalent to a U block

• and M(B , ω) = M(F , ω) = 0

⇒ One ωi must be entirely in this U block, two ⊥ to it

⇒ Remaining freedom: Two-plane in R2,18
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Cycles between D-Branes on T 2/Z2

[Braun,Hebecker,Triendl]

a b

c

Brane 1 Brane 2

• One leg in the base, one in the fibre torus

• Monodromy τ → τ + 1 twists fibre leg when going around a
D-brane

• They are topologically a sphere ↔ self-intersection −2.
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Intersections, O7 Planes

• These cycles can be collapsed to a line in the base:

=

−→

• Two cycles meeting at a brane have intersection 1

• O7 plane monodromy includes involution of the fibre, hence
two cycles encircling an O7 plane (×) do not intersect:3

4

−1 +1
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Shrinking Cycles and Gauge Enhancement

Intersection matrix of shrinking cycles determines gauge group:
Consider e.g. orientifold: One O7, four D7s

3

2 1

4 →֒ Intersection matrix




−2 1 0 0
1 −2 1 1
0 1 −2 0
0 1 0 −2




⇒ Cartan matrix of SO(8): If these cycles shrink to zero size, the
resulting gauge group will be SO(8)

Note: Only cycles with self-intersection -2 produce singularities
when shrinking
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Cycles at the SO(8) Singularity

Complex structure ω can be expanded in the vectors EI and e i , ei of
the E8 × E8 and U-blocks with coefficients WI = W 1

I + uW 2
I , u, s

• Cf. Wilson line breaking in heterotic theory: W 1, W 2 act like
Wilson lines on a T 2, i.e. one-to-one correspondence between
surviving roots and shrinking cycles

• Take W 1 = (04, 1
2

4
, 04, 1

2

4
), W 2 = (1, 07, 1, 07)

⇒ 16 shrinking cycles in 4 sets, each with intersection matrix D4

⇒ SO(8)4 singularity
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Cycles at the SO(8) Singularity

By chosing new basis elements α and β, we can give an expansion
of ω adapted to the SO(8)4 point:

ω =
α

2
+ u e2 + s

β

2
−
(

u s − z2

2

)
e1 + zI ÊI

• zI → brane positions, zI = 0 is SO(8) point

• u and s: Complex structure of base, i.e. position of O7’s and
(constant) axiodilaton

• s: Complex structure of fibre torus, i.e. axiodilaton

→֒ Explicit mapping between ω and the positions of the branes.
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Fluxes

To fix a certain D7 configuration, we want to stabilise the
corresponding point in moduli space by fluxes:

• Fluxes: Background values of p-form field strengths

• In type IIB, there are

• three-form flux G3 on the whole space
• two-form flux F2 of brane gauge theories

• In F-theory, these are combined into four-form flux G4 (from
M-theory)

• Consistency conditions on flux choice:

• Flux quantisation requires flux to be integral
• Tadpole cancellation condition

∫

M

G4 ∧ G4 ≤ χ

24
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Fluxes on K3 × K3

• Aim: determine explicitly the flux stabilizing a desired D7
configuration.

• The first example we study is Y = K3 × K̃3
[Lüst,Mayr,Reffert,Stieberger; Görlich,Kachru,Tripathy,Trivedi; Aspinwall,Kallosh;

Dasgupta,Rajesh,Sethi]

• Toy model (no intersections, hence no chiral matter)

• To find the moduli potential we use the language of M-theory
and then we map back the results

• M-theory on K3× K̃3: four-form flux G = G IΛηI ∧ η̃Λ with two
legs on each K3 (because of 4d Lorentz invariance)
→֒ We can associate with G two homomorphisms:

G : H2(K3) → H2(K̃3) G a : H2(K̃3) → H2(K3)

where G a is defined by M[w ,G aṽ ] = M̃[G w , ṽ ].
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Flux Potential on K3 × K3

Same starting point as [Haack,Louis]:

V =
1

4V3

(∫

K3×fK3

G ∧ ∗G − l6Mχ

12

)

• V: Overall volume of K3 × K̃3

• V depends on the metric moduli:

• Metric is fixed by ωi and ω̃j (up to SO(3) rotations), plus the
two volumes

• Inequivalent {ωi} are given by different way of putting a
3-plane into R3,19 → 57 moduli

• Total number of moduli is 2 × (57 + 1) (δωi , δω̃j , ν, ν̃)

• K3 × K̃3 is not a proper CY4, so some differences
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Flux Potential on K3 × K3

Flux potential in terms of the ωi , ω̃i and volumes:

V = − 1

2(ν · ν̃)3

(
∑

j

‖G ω̃j‖2
⊥

+
∑

i

‖G aωi‖2
e⊥

)

Here ‖v‖2
⊥

= ‖(v −∑i (v · ωi)ωi)‖2 is the norm of the part of v

orthogonal to the three-plane

• Positive definite potential

• Manifestly symmetric under SO(3)

• Minima at V = 0:

G ω̃j ∈ 〈ω1, ω2, ω3〉 G aωi ∈ 〈ω̃1, ω̃2, ω̃3〉

• ν and ν̃ are unfixed, flat directions (when V = 0)
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Existence of V = 0 Minima

There exist a minimum iff ∃ changes of bases P, P̃ ∈ SO(3, 19) s.t.

P−1GP̃ = Gd ≡
(

a3 0
0 c19

)

a3 and c19 diagonal matrices with eigenvalues ai , cq.

• The first 3 vectors of the new bases are +-norm and
orthogonal. We call them ωi and ω̃j .

• ω̃j are mapped to ωi by G and vice versa.
• Not every matrix is diagonalizable by two SO(n, m)

transformations:

G bi-diagonalisable ⇐⇒ G aG is diagonalisable with all λi > 0.

→֒ There are fluxes that give V > 0 without points where V = 0!
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Flat Directions?

Assume {ωi , ω̃j} is absolute minimum of the potential  are all
moduli stabilised?
{ωi , ω̃j} isolated minimum ⇔ 6∃ continuous deformations {δωi , δω̃j}
s.t.

G (ω̃j + δω̃j) ∈ 〈(ωi + δωi)〉 G a(ωi + δωi) ∈ 〈(ω̃j + δω̃j)〉

Define δω̃j = β̃q

j ũq and δωi = βi
pup (with ũ, u orthogonal to ω̃j , ωi).

G (ω̃k + δω̃k) = ai(ωi + δωi) + (cpβ̃k
p − akβi

p) up

G a(ωh + δωh) = ah(ω̃j + δω̃j) + (cqβk
q − ahβ̃j

q) ũq

Complicated linear system!
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Flat Directions?

Can be rewritten in matrix form as




c19

c19 −a3 ⊗ 119

c19

c19

−a3 ⊗ 119 c19

c19







β̃1

β̃2

β̃3

β1

β2

β3




= 0 ∀β, β̃

Isolated minimum requires the determinant of this matrix to vanish.
By determinant condensation, this is equivalent to the condition
that 6 ∃(i , q) such that ai = cq:

⇒ If ai 6= cq ∀i , q, then all the moduli (except ν, ν̃) are stabilised!

C. Lüdeling (ITP, Universität Heidelberg) Bonn, July 8, 2008 25 / 32



(Non-)Supersymmetric Minima

• A vacuum is supersymmetric if G is [Becker-Becker]

• primitive wrt J = j + j̃ , i.e. J ∧ G = 0
• (2,2) wrt to the c.s. Ω = ω ∧ ω̃, i.e. Ω ∧ G = 0

• This translates into the conditions:

• G ω̃3 = 0 and G aω3 = 0 ⇒ a3 = 0;
• ω · G ω̃ = 0 ⇒ a1 = a2.

Minima at V = 0 can be:

• N = 2 when a1 = a2 = a3 = 0;

• N = 1 when a3 = 0 and a1 = a2 6= 0;

• N = 0 otherwise.
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F-theory Restrictions

We use the M-th language to fix moduli by fluxes. To apply this to
F-theory, we require:

• K̃3 must be elliptically fibred.

• Three-form flux G3 and two-form fluxes F2 in F-th: 4-form flux
G in M-theory with one leg on the fibre and one on the base of
K̃3.

In M-theory this translates to putting zero flux on one U-block.
Then:

• K̃3 is fixed to be elliptically fibered, with fibre and base in the
U-block.

• the size of the fibre is not fixed (modulus in M-theory, but not
in F-theory): we can do the F-theory limit.

• One modulus of lower K3 remains unfixed
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Symmetry Breaking by Fluxes

• U(1) fluxes in brane gauge theory can break gauge groups (but
preserve rank)

• Fixing moduli can break Cartan generators: Fixed scalar
modulus becomes component of 4d gauge field in F-theory limit

• Consistent with IIB analysis: Kähler moduli get charged,
stabilisation induces anomaly which breaks the U(1)

[Haack,Krefl,Lüst,van Proeyen,Zagermann]

• We can engineer desired subgroup of the group inferred form
the singularities alone

• Work in progress...
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Fixing a given configuration

Aim: find the flux that fixes a given configuration of branes.

• Positions of branes encoded in the c.s. ω̃ of K̃3.

• Gauge enhancement ↔ brane stacks ↔ shrunken cycles ↔
G has block-diagonal structure

• Method:

• Choose basis of cycles to shrink ⇒ determines block-diagonal
structure

• In blocks, find matrices with different positive eigenvalues in
positive and negative norm subspaces
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Flux Constraints

The flux is subject to strong constraints:

• Positive eigenvalues (to have a minimum)

• Integrality G IΛ ∈ Z
• Tadpole cancellation 1

2

∫
G ∧ G = 1

2
tr G aG = χ

24
= 24

The last two constraints pose the hardest problem, since tr G aG is
generically too large, and we need to scan a large number of
matrices.
Can stabilise SO(8)4 point, and we can move branes off their stacks,
i.e. get SO(6) × U(1) × SO(8)3, SO(4) × SU(2) × SO(8)3 .
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Conclusions

• We have a nice geometric picture of D7 brane motion

• We studied the stablilisation of D7 configurations by fluxes in
M-theory

• We found explicit conditions for the existence of minima and
absence of flat directions

• Translation to F-theory ⇒ recipe to find fluxes that stabilise a
desired situation

• Open problem: Numerical scan of matrices is very
time–consuming

• Outlook: Generalise to elliptically fibred four-folds to get
physically more realistic models (intersecting branes, chiral
fermions, . . . )
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