General Warped Solution in 6d Supergravity

Christoph Lüdeling

DPG-Frühjahrstagung Teilchenphysik

H. M. Lee, CL, JHEP 01(2006) 062 [arXiv:hep-th/0510026]

Contents

- Motivation
- 2 The Setup
- 3 The General Solution
- 4 Examples
- **5** Conclusion and Outlook

Warped Geometries

Warped 4 + d-dimensional geometries of the form

$$ds_{4+d}^2 = W^2(y)ds_4^2 + ds_d^2$$

can generate large hierarchies between branes located at different points in the extra dimensions

 See Randall-Sundrum-Scenario in five dimensions or KKLT string compactifications

Conical Branes

Codimension-two branes are special:
 They are conical branes, i.e. the codimensional metric is of the form

$$\mathrm{d} \mathit{s}_{2}^{2} \propto \mathrm{d} \rho^{2} + \beta^{2} \rho^{2} \mathrm{d} \theta^{2}$$

with a deficit angle

$$\delta = 2\pi \left(1 - \beta\right)$$

- The curvature is finite up to a δ -function at the brane position
- The brane curvature is independent of the brane tension ("self-tuning")
- Cosmic strings also are codimension-two objects with deficit angle

The Model

Ingredients:

- 6d supergravity: Gravity & tensor Multiplet $(G_{MN}, \Psi_M, \chi, B_{MN}, \Phi)$
- Gauged $U(1)_R$ -symmetry: vector multiplet (A_M, λ)
- 4d branes with tensions Λ_i

Action: Bulk and branes

$$\begin{split} S_{\text{bulk}} &= \int \! \mathrm{d}^6 X \sqrt{-G} \, \big\{ \tfrac{1}{2} R - \tfrac{1}{2} \partial_M \Phi \partial^M \Phi - \tfrac{1}{4} \mathrm{e}^{-\Phi} F_{MN} F^{MN} - 2 g^2 \mathrm{e}^{\Phi} \big\} \\ &\quad + 2\text{-form} + \text{fermions} \big\} \end{split}$$
 Potential
$$S_{\text{branes}} &= -\sum_i \int \! \mathrm{d}^4 x_i \sqrt{-g_i} \, \Lambda_i \end{split}$$

Ansatz

Ansatz: Warped background solution with 4d maximal symmetry (i.e. de Sitter, Minkowski or anti-de Sitter space):

$$\begin{split} \mathrm{d}s^2 &= W^2(y) \tilde{g}_{\mu\nu}(x) \mathrm{d}x^\mu \mathrm{d}x^\nu + \hat{g}_{mn} \mathrm{d}y^m \mathrm{d}y^n \\ R_{\mu\nu}\left(\tilde{g}\right) &= 3\lambda \tilde{g}_{\mu\nu} \\ F_{mn} &= \sqrt{\hat{g}} \, \epsilon_{mn} F(y) \,, \quad F_{\mu\nu} = F_{\mu m} = 0 \\ \Phi &= \Phi(y) \\ H_{MNP} &= 0 \,, \quad \text{fermions} = 0 \end{split}$$

- Regular solution and compact internal space $\Rightarrow \lambda = 0$, i.e. Minkowski space is the unique maximally symmetric solution [Gibbons et al. '03]
- Dilaton: $\Phi = \Phi_0 2 \ln W$
- Gauge flux $F(y) = f e^{\Phi} W^{-4} = f e^{\Phi_0} W^{-6}$

Warp Factor

• For the warp factor, rewrite metric in terms of complex coordinate $z = y_5 + iy_6$ as $(W \equiv e^B)$

$$\mathrm{d} s^2 = \mathrm{e}^{2B(z,\overline{z})} \left(\eta_{\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu + \mathrm{e}^{2A(z,\overline{z})} \mathrm{d} z \mathrm{d} \overline{z} \right)$$

 (zz)-component of Einstein equation is easily solved up to a holomorphic function:

$$\overline{\partial} \left(e^{-2A} \overline{\partial} B \right) = 0 \quad \Rightarrow \quad \text{holomorphic function } \textit{V(z)} = e^{-2A} \overline{\partial} B$$

• Choice of V(z) determines warp factor

Warp Factor $\leftrightarrow V(z)$

- Unwarped solution $\Leftrightarrow B={\rm const.} \Leftrightarrow V=0$ and $f^2=4g^2$ [Aghababaie et al. '03, Redi 04]
- $V \neq 0 \Rightarrow$ ordinary differential equation for the warp factor [Chodos, Poppitz '99]

$$\frac{dW}{d\zeta} = -\gamma^2 \frac{W^4 - 2v + u^2 W^{-4}}{2W^3} = \frac{P(W)}{W^3}$$

with new real coordinate and parameters

$$\zeta = \frac{1}{2} \int^z \frac{\mathrm{d}\omega}{V(\omega)} + \mathrm{c.c.}\,, \quad \gamma^2 = \frac{1}{4} e^{\Phi_0} g^2\,, \; u^2 = \frac{f^2}{4g^2}\,, \; v$$

 ζ might be only locally defined.

 \bullet Warp factor is independent of the "imaginary counterpart" of ζ

$$\theta = \frac{i}{2} \int^{z} \frac{d\omega}{V(\omega)} - \text{c.c.}$$

Solution

This can be integrated to give

$$\frac{\left(W^{4}\left(\zeta\right)-W_{-}^{4}\right)^{W_{-}^{4}}}{\left(W_{+}^{4}-W^{4}\left(\zeta\right)\right)^{W_{+}^{4}}}=\exp\left\{2\gamma^{2}\left(W_{+}^{4}-W_{-}^{4}\right)\left(\zeta-\zeta_{0}\right)\right\}$$

with the roots of P(W)

$$W_{\pm}^4 = v \pm \sqrt{v^2 - u^2}$$

- ullet Warp factor bounded in the range $W_- \leq W \leq W_+$
- Reality of warp factor gives constraints $v^2 \ge u^2$, v > 0
- Extrema W_{\pm} reached for $\zeta \to \pm \infty$, correspond to conical singularities
- Four real integration constants: f, Φ_0 , v and ζ_0
- ullet For $g^2
 ightarrow 0$, i.e. no potential, the warp factor is unbounded

General Metric

The general metric finally is

$$\mathrm{d}s^2 = W^2(z,\overline{z}) \, \eta_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} + \frac{1}{2 \, |V(z)|} \frac{P(W)}{W^2} \mathrm{d}z \mathrm{d}\overline{z}$$

- Constraint on V(z): For well-behaved (i.e. single-valued and free from singularities up to δ -functions) warp factor and higher curvature invariants, V can have only simple zeroes or poles
- Zeroes and poles of V(z):
 - Simple zero $V(z) \propto (z-z_0)/c$ with real c leads to conical brane with deficit angle

$$2\pi \left(1 - \gamma^2 |c| W_{\pm}^{-4} \left(W_{+}^4 - W_{-}^4\right)\right)$$
 for $c \leq 0$

- ullet Simple pole $V(z) \propto 1/\left(z-z_0
 ight)$ leads to brane with fixed deficit angle -2π
- Behaviour at infinity: For $V \propto z^n$ with n > 2, there will another brane with fixed deficit angle $2\pi (2-n)$ at $z = \infty$

Example: Two Branes

Simple ansatz:

$$V(z) = -\frac{z}{c}$$
, c real and positive

Globally well-defined change of coordinates

$$\zeta = -\frac{1}{2}c\ln|z|^2 \qquad \qquad \theta = -\frac{1}{2i}c\ln\frac{z}{\overline{z}}$$

- ullet Conical branes at z=0 and $z=\infty$ with warp factors $W_\pm \Rightarrow$ warped rugby
- Warp factor $(d\eta = c^{-1}W^{-4}d\zeta)$

$$W^4(\eta) = \frac{1}{2} \left(W_+^4 + W_-^4 \right) + \frac{1}{2} \left(W_+^4 - W_-^4 \right) anh \left[\left(W_+^4 - W_-^4 \right) \gamma^2 c \eta \right]$$

interpolates between W_+ and W_-

 \bullet Warp factor does not depend on $\theta \leadsto$ axial symmetry in extra dimensions

Flux Quantisation and Unwarped Limit

For compact extra dimensions, flux is quantised, in this case

$$\frac{W_{+}^{4} - W_{-}^{4}}{W_{+}^{4} W_{-}^{4}} f = \frac{8n}{g} \frac{e^{-\Phi_{0}}}{c} \quad \rightsquigarrow \quad (2\pi - \Lambda_{+}) (2\pi - \Lambda_{-}) = (2\pi n)^{2}$$

- The parameter c can be absorbed by a rescaling of θ, two parameters are fixed by matching of brane tensions to deficit angles ~ One undetermined modulus remains.
- For the unwarped limit, take c to infinity while keeping

$$k = c \left(W_+^4 - W_-^4 \right)$$

finite \leadsto unwarped rugby, two branes with same deficit angle $2\pi \left(1-\gamma^2 W_+^{-4} k\right)$. This is consistent with brane conditions and keeps the Planck mass finite.

Example: Many Branes

For a multi-brane solution, take a similar ansatz:

$$V = \frac{1}{c} \prod_{i=1}^{N} (z - z_i)$$

- For single-valued warp factor, c and all z_i have to be real
- N branes with warp factor W_+ or W_- , depending on the sign of

$$a_i = c \prod_{j \neq i} \frac{1}{z_i - z_j}$$

- Additional brane at $z=\infty$ with fixed brane tension $\Lambda^\infty=2\pi\,(2-N)$
- After flux quantisation and brane tension matching, still one undetermined modulus
- Planck mass and unwarped limit OK

Conclusions and Outlook

- We have presented the general warped solution of 6d supergravity with 4d maximal symmetry
- Important properties depend on a free holomorphic function
 - Linear function: Recover known two-brane solutions
 - Function with many zeros gives multi-brane solutions. However, fixed-tension brane required in this case
- One undetermined modulus in simple cases, one fine-tuning relation between brane tensions
- To do:
 - Systematic study of different functions, in particular elliptic (doubly periodic) functions for torus geometry in extra dimensions
 - Generalisations: Modulus stabilisation, time-dependent solutions