(Non-)Universal Anomalies and Discrete Symmetries from the Heterotic String

Christoph Lüdeling bctp and PI, University of Bonn

Planck 2012, Warsaw

CL, Fabian Ruehle, Clemens Wieck PRD **85** [arXiv:1203.5789] and work in progress

C. Lüdeling (bctp)

Anomalies and Discrete Symmetries

Planck 2012, May 29, 2012

• MSSM superpotential contains (potentially) bad terms:

$$W_{bad} \supset \mu H_u H_d + QLd^c + u^c d^c d^c + LLe^c + QQQL + u^c u^c d^c e^c + \cdots$$

- Forbid/constrain these operators by (discrete) symmetries, (matter parity, proton hexality, Z^R₄,...) [many people here]
- In string constructions, discrete symmetries can arise as remnants of gauge and internal Lorentz symmetries

• MSSM superpotential contains (potentially) bad terms:

$$W_{bad} \supset \mu H_u H_d + QLd^c + u^c d^c d^c + LLe^c + QQQL + u^c u^c d^c e^c + \cdots$$

- Forbid/constrain these operators by (discrete) symmetries, (matter parity, proton hexality, Z^R₄,...) [many people here]
- In string constructions, discrete symmetries can arise as remnants of gauge and internal Lorentz symmetries
- Discuss anomalies in such models (bottom-up) and the appearance of discrete symmetries in the $E_8 \times E_8$ heterotic string
- Simple example: Consider \mathbb{Z}_3 orbifold, its blowup and GLSM realisation

< 🗗 ▶

1 Green–Schwarz Mechanism and Universality

2 Heterotic Models

3 Remnant Discrete Symmetries

< 67 ►

Anomalies

- determined by chiral spectrum
- given in terms of anomaly polynomial *I*₆ (via descent equations) [Wess, Zumino '71; Stora '84; Alvarez-Gaumé, Ginsparg '84]
- insensitive to continuous deformations

Anomalies

- determined by chiral spectrum
- given in terms of anomaly polynomial *I*₆ (via descent equations) [Wess, Zumino '71; Stora '84; Alvarez-Gaumé, Ginsparg '84]
- insensitive to continuous deformations

Require:

- $U(1)_A^2 U(1)_Y$ anomaly should vanish
- for \mathbb{Z}_N symmetries, only $G^2 \mathbb{Z}_N$ meaningful

[Ibanez, Ross '91; Banks, Dine '92; Araki et al. '08]

Planck 2012, May 29, 2012 4 / 28

[Green, Schwarz '84]

Cancel transformation of measure with variation of action - requires

- a) factorisation of anomaly polynomial, $I_6 = X_4 Y_2$, i.e. $Y_2 = F_2 = dA_1$
- b) axion field a with shift gauge transformation

$$\delta a = -Y_0^{(1)} = -\lambda$$

[Green, Schwarz '84]

Cancel transformation of measure with variation of action - requires

- a) factorisation of anomaly polynomial, $I_6 = X_4 Y_2$, i.e. $Y_2 = F_2 = dA_1$
- b) axion field a with shift gauge transformation

$$\delta a = -Y_0^{(1)} = -\lambda$$

c) axion coupling to X_4 $S_{\rm GS} = \int a X_4 + \cdots \Rightarrow \delta S_{\rm GS} = -\int I_4^{(1)}$

- Needs shift and coupling
- Dualise a to two-form B_2 : exchange $Y_2 \leftrightarrow X_4$, shift \leftrightarrow coupling
- Generalisation: sum of factorised anomalies $I_6 = \sum_a Y^a X^a$ is cancelled by set of axions

Green–Schwarz Axion

 $Y_2 = dA_A$ is field strength of the "anomalous U(1)", axion transforms with a shift

$$\Longrightarrow S_{a,\mathrm{kin}} = \int rac{1}{2} \left| \mathrm{d}a + A_A
ight|^2$$

< □→6 / 28

Green–Schwarz Axion

 $Y_2 = \mathsf{d} A_A$ is field strength of the "anomalous U(1)", axion transforms with a shift

$$\implies S_{a,\mathrm{kin}} = \int \frac{1}{2} |\mathrm{d}a + A_{\mathcal{A}}|^2$$

- Axion kinetic term gives Stueckelberg mass term for $U(1)_A \Rightarrow$ anomalous U(1)s massive, but remain as (perturbative) selection rules
- X₄ contains field strengths of other gauge group factors G_i, weighted with (arbitrary) anomaly coefficients:

$$X_4 = A_{ ext{grav}-U(1)} \operatorname{tr} R^2 + \sum_i A_{G_i^2 - U(1)_A} \operatorname{tr} F_i^2$$

 Special case: If anomaly is cancelled by Kalb–Ramond b₂ ⇒ X₄ is reduction of 10D X₄^{uni}, and universal axion a₀ couples universally to all gauge groups

C. Lüdeling (bctp)

< □
6 / 28

Take MSSM with additional $U(1)_X$, charges q_Q, \ldots, q_{H_d} \rightsquigarrow Anomaly coefficients generically not universal

Impose e.g.

- allowed Yukawa couplings,
- $U(1)_X$ is flavour-blind and commutes with SU(5) (but assume doublet-triplet splitting, i.e. no Higgs triplets),
- may or may not be an R symmetry (i.e. R = 0 or R = 1)

$$\begin{split} &A_{SU(3)^2-U(1)_X} = 3 \left(3q_{10} + q_{\bar{5}} \right) - 6, \\ &A_{SU(2)^2-U(1)_X} = 2 \left(3q_{10} + q_{\bar{5}} \right) - 6, \\ &A_{U(1)_Y^2-U(1)_X} = 2 \left(3q_{10} + q_{\bar{5}} \right) - 9. \end{split}$$

< 47 →

7 / 28

Universality from Underlying GUT?

- Unbroken GUT: Anomaly coefficients universal (duh)
- After GUT breaking: Depends on mechanism!
- 4D: Breaking by VEVs removes vector-like states (under unbroken group)
 → no change to anomalies
- VEVs are continuous deformations

< 🗗 ▶

Universality from Underlying GUT?

- Unbroken GUT: Anomaly coefficients universal (duh)
- After GUT breaking: Depends on mechanism!
- 4D: Breaking by VEVs removes vector-like states (under unbroken group)
 → no change to anomalies
- VEVs are continuous deformations
- Higher-dimensional models: 4D chiral spectrum formed by zero modes of internal Dirac operators
- Number of zero modes depends on discrete choices: boundary conditions, fluxes \rightsquigarrow change in anomalies

< 47 →

Example: Broken SU(5)

Anomalies get contributions from matter, gauginos and Higgses:

Matter	gaug	ginos	Hig	gses
5 , 10	SM	X, Y	3 's	2 's
$A_{5} = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right)$	+	5R	+0	Сн
$A_{3} = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right)$	+3 <i>R</i>	+2 <i>R</i>	$+C_H$	
$A_2 = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right)$	+2 <i>R</i>	+3 <i>R</i>		$+C_H$
$A_1 = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right)$		+5 <i>R</i>	$+\frac{2}{5}C_{H}$	$+\frac{3}{5}C_{H}$

 $\left(C_{H}=\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}-2R\right)\right)$

• For unbroken SU(5), $A_3 = A_2 = A_1 = A_5$

✓ □
 →
 9 / 28

Example: Broken SU(5)

Anomalies get contributions from matter, gauginos and Higgses:

Matter	gau	ginos	Hig	gses
$\overline{5},10$	SM	X, Y	3 's	2 's
$A_5 = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right)$	+	5 <i>R</i>	+0	Сн
$A_3 = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right)$	+3 <i>R</i>	+2 <i>P</i>	$+C_H$	
$A_{3} = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right) \\ A_{2} = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right)$	+2 <i>R</i>	+2R		$+C_H$
$A_1 = \frac{3}{2} \left(3q_{10} + q_{\bar{5}} - 4R \right)$		45R	$+\frac{2}{5}C_{H}$	$+\frac{3}{5}C_{H}$

 $\left(C_{H}=\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}-2R\right)\right)$

- For unbroken SU(5), $A_3 = A_2 = A_1 = A_5$
- SU(5) breaking removes X, Y gauginos → non-universality for R symmetries

Example: Broken SU(5)

Anomalies get contributions from matter, gauginos and Higgses:

 $\left(C_{H}=\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}-2R\right)\right)$

- For unbroken SU(5), $A_3 = A_2 = A_1 = A_5$
- SU(5) breaking removes X, Y gauginos → non-universality for R symmetries
- doublet-triplet splitting → generic non-universality

C. Lüdeling (bctp)

√ □ → 9 / 28

More Possibilities, e.g. for $G_{\text{SM}} \times \mathbb{Z}_N$

Operator		
$(LH_u)^2$		
$H_u H_d$		
LH_u		
$10\overline{5}\overline{5}$		
$101010\overline{5}$		
$101010H_d$		
$LH_uH_dH_u$		

< □ →10 / 28

Operator	SM Yukawas	Weinberg Op.	
$(LH_u)^2$	$4R - 4q_{10} + 2q_{\bar{5}}$	2 <i>R</i>	
$H_u H_d$	$4R - 3q_{10} - q_{\bar{5}}$	$\frac{5R-5q_{10}+k\frac{N}{2}}{2}$	
LH_u	$2R - 2q_{10} + q_{\bar{5}}$	$R + k\frac{N}{2}$	
$10\overline{5}\overline{5}$	$q_{10} + 2q_{\bar{5}}$	$-2R + 5q_{10}$	
$101010\overline{5}$	$3q_{10} + q_{\bar{5}}$	$-R + 5q_{10} + k\frac{N}{2}$	
$101010H_d$	$4R + 2q_{10} - q_{\bar{5}}$	$3R + k\frac{N}{2}$	
$LH_uH_dH_u$	$6R - 5q_{10}$	$6R - 5q_{10}$	

< 47 ►

Operator	SM Yukawas	Weinberg Op.	\mathbb{Z}_6^X	
$(LH_u)^2$	$4R - 4q_{10} + 2q_{\bar{5}}$	2 <i>R</i>	0	
$H_u H_d$	$4R - 3q_{10} - q_{\bar{5}}$	$\frac{5R-5q_{10}+k\frac{N}{2}}{2}$	4	
LH_u	$2R - 2q_{10} + q_{\bar{5}}$	$R + k\frac{N}{2}$	3	
$10\overline{5}\overline{5}$	$q_{10} + 2q_{\bar{5}}$	$-2R + 5q_{10}$	5	
$101010\overline{5}$	$3q_{10} + q_{\bar{5}}$	$-R + 5q_{10} + k\frac{N}{2}$	2	
$101010H_d$	$4R + 2q_{10} - q_{\bar{5}}$	$3R + k\frac{N}{2}$	3	
$LH_uH_dH_u$	<mark>6R</mark> – 5q ₁₀	<mark>6R</mark> – 5q ₁₀	1	

 \rightsquigarrow forbid all bad terms e.g. by non- $R \ \mathbb{Z}_6^X$ with $q_{10} = 1 \,, \qquad q_{ar{5}} = 5 \,, \qquad q_{H_u} = 4 \,,$

 $q_{H_d}=0$

 \mathbb{Z}_2 matter parity as subgroup

√ ⊕ → 10 / 28

Operator	SM Yukawas	Weinberg Op.	\mathbb{Z}_6^X	<i>SO</i> (10)
$(LH_u)^2$	$4R - 4q_{10} + 2q_{\bar{5}}$	2 <i>R</i>	0	2 <i>R</i>
$H_u H_d$	$4R - 3q_{10} - q_{\bar{5}}$	$\frac{5R-5q_{10}+k\frac{N}{2}}{2}$	4	0
LH _u	$2R - 2q_{10} + q_{\bar{5}}$	$R + k\frac{N}{2}$	3	R
$10\overline{5}\overline{5}$	$q_{10} + 2q_{\bar{5}}$	$-2R + 5q_{10}$	5	3 <i>R</i>
$101010\overline{5}$	$3q_{10} + q_{\bar{5}}$	$-R + 5q_{10} + k\frac{N}{2}$	2	4 <i>R</i>
$101010H_d$	$4R + 2q_{10} - q_{\bar{5}}$	$3R + k\frac{N}{2}$	3	3 <i>R</i>
$LH_uH_dH_u$	$6R - 5q_{10}$	<mark>6R</mark> – 5q ₁₀	1	R

 \rightsquigarrow forbid all bad terms e.g. by non- $R \mathbb{Z}_6^X$ with

 $\begin{array}{ll} q_{10}=1\,, \qquad q_{\bar{\mathbf{5}}}=5\,, \qquad q_{H_u}=4\,, \qquad q_{H_d}=0\\ \mathbb{Z}_2 \text{ matter parity as subgroup}\\ \text{Requiring $SO(10)$ relations for matter, we need $R=1$} \end{array}$

√ ⊕ → 10 / 28

1 Green–Schwarz Mechanism and Universality

2 Heterotic Models

3 Remnant Discrete Symmetries

< 67 ▶

In heterotic models, all axions arise from B_2 in 10D with transformation Distinguish Orbifolds and smooth Calabi–Yaus with vector bundles:

Orbifolds	Calabi–Yau X with Gauge Bundle
single two-form $b_2 \leftrightarrow$ universal axion a_0	$B_2 = b_2 + \beta_r E_r, E_r \in H^2(X) \rightsquigarrow$ additional axions β_r
Universality: a_0 couples to reduction of X_4^{uni}	Couplings $\beta_r X_4^r$ depend on gauge background and curvature – some remnants of universality
(at most) one anomalous $U(1)$ (de- termined by shift of a_0)	Number of anomalous $U(1)$ s given by rank of bundle

< 🗗 ►

T^6/\mathbb{Z}_3 Orbifold

For illustration, consider simple T^6/\mathbb{Z}_3 orbifold model

 $V = \frac{1}{3} (1, 1, -2, 0^5) (0^8)$, no Wilson lines \Rightarrow standard embedding, 27 equivalent fixed points

 $\begin{array}{ll} \mbox{Gauge group} & E_6 \times SU(3) \left[\times E_8 \right] \\ \mbox{spectrum} & 3 \left(\textbf{27}, \overline{\textbf{3}} \right) + 27 \left[(\textbf{27}, \textbf{1}) + 3 \left(\textbf{1}, \textbf{3} \right) \right] \end{array}$

In particular, no anomalous U(1), hence universal axion does not shift under gauge transformations, and no FI term has to be cancelled

Blowup

[Groot Nibbelink et al. 07-09]

< 67 →

Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing out singularities – connection to smooth Calabi–Yau with bundles In particular: VEVs for twisted non-oscillator states (27, 1) \leftrightarrow line bundles (i.e. Abelian fluxes)

< A >

Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing out singularities – connection to smooth Calabi–Yau with bundles In particular: VEVs for twisted non-oscillator states (27, 1) \leftrightarrow line bundles (i.e. Abelian fluxes)

Procedure:

- **1** Replace fixed points by exceptional divisors E_r (\mathbb{P}^2 s)
- 2 Turn on Abelian gauge flux along the exceptional divisors,

$$\mathcal{F} = V_r^I H_I E_r$$
, H_I : Cartan generators of E_8

(automatically (1, 1)-form)

Note: Line bundles don't reduce rank, axion shifts do:

$$B_2 = b_2 - \beta_r E_r, \quad \delta B_2 = -\operatorname{tr} \lambda \mathcal{F} \quad \Rightarrow \quad \delta \beta_r = \operatorname{tr} \lambda V_r$$

Bundle Vectors

Bundle has to satisfy DUY eqns. (analogue of D-term equation)

$$0 = \frac{1}{2} \int_X J \wedge J \wedge \mathcal{F} = \sum_r \operatorname{vol}(E_r) V_r, \quad \text{with all } \operatorname{vol}(E_r) > 0$$

Take three bundle vectors from p_{sh} of twisted **27** which sum to zero, distribute among exceptional divisors

→→ flux quantisation and Bianchi Identity fulfilled automatically DUY eqns. easily satisfied for arbitrary large volumes

Bundle Vectors

Bundle has to satisfy DUY eqns. (analogue of D-term equation)

$$0 = \frac{1}{2} \int_X J \wedge J \wedge \mathcal{F} = \sum_r \operatorname{vol}(E_r) V_r \,, \quad \text{with all } \operatorname{vol}(E_r) > 0$$

Take three bundle vectors from p_{sh} of twisted **27** which sum to zero, distribute among exceptional divisors

→ flux quantisation and Bianchi Identity fulfilled automatically

DUY eqns. easily satisfied for arbitrary large volumes

Each bundle vector breaks $E_6 \rightarrow SO(10) \times U(1)$, only two are independent.

Bundle Vectors

Bundle has to satisfy DUY eqns. (analogue of D-term equation)

$$0 = \frac{1}{2} \int_X J \wedge J \wedge \mathcal{F} = \sum_r \operatorname{vol}(E_r) V_r \,, \quad \text{with all } \operatorname{vol}(E_r) > 0$$

Take three bundle vectors from p_{sh} of twisted **27** which sum to zero, distribute among exceptional divisors

→ flux quantisation and Bianchi Identity fulfilled automatically

DUY eqns. easily satisfied for arbitrary large volumes

Each bundle vector breaks $E_6 \rightarrow SO(10) \times U(1)$, only two are independent.

 \Rightarrow gauge group $SO(8) \times U(1)_A \times U(1)_B \times SU(3)$

Massless spectrum depends on distribution (given by (k, p, q) with k + p + q = 27)

C. Lüdeling (bctp)

 ↓
 15 / 28

Blowup Anomalies

Blowup: two U(1)'s, different spectrum \Rightarrow anomaly polynomial $I_6 = \int_X I_{12}$ with backgrounds inserted, or from triangle diagrams

$$\Rightarrow I_{6} \sim F_{A}^{3} \cdot \left(\frac{k-6}{12}\right) + F_{A}F_{B}^{2} \cdot \left(\frac{k-18}{4}\right)$$

$$+ F_{A}\left[\operatorname{tr} F_{SU(3)}^{2} + \operatorname{tr} F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr} R^{2}\right] \cdot \left(\frac{k-9}{2}\right)$$

$$+ F_{B}\left[\frac{1}{8}F_{B}^{2} + \frac{1}{48}F_{A}^{2} + \operatorname{tr} F_{SU(3)}^{2} + \operatorname{tr} F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr} R^{2}\right] \cdot \left(\frac{p-q}{2}\right)$$

< 47 →

Blowup Anomalies

Blowup: two U(1)'s, different spectrum \Rightarrow anomaly polynomial $I_6 = \int_X I_{12}$ with backgrounds inserted, or from triangle diagrams

$$\Rightarrow I_{6} \sim F_{A}^{3} \cdot \left(\frac{k-6}{12}\right) + F_{A}F_{B}^{2} \cdot \left(\frac{k-18}{4}\right)$$

$$+ F_{A}\left[\operatorname{tr} F_{SU(3)}^{2} + \operatorname{tr} F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr} R^{2}\right] \cdot \left(\frac{k-9}{2}\right)$$

$$+ F_{B}\left[\frac{1}{8}F_{B}^{2} + \frac{1}{48}F_{A}^{2} + \operatorname{tr} F_{SU(3)}^{2} + \operatorname{tr} F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr} R^{2}\right] \cdot \left(\frac{p-q}{2}\right)$$

• For p = q, $U(1)_B$ is omalous, while $U(1)_A$ is always anomalous

< 47 →

Blowup Anomalies

Blowup: two U(1)'s, different spectrum \Rightarrow anomaly polynomial $I_6 = \int_X I_{12}$ with backgrounds inserted, or from triangle diagrams

$$\Rightarrow l_{6} \sim F_{A}^{3} \cdot \left(\frac{k-6}{12}\right) + F_{A}F_{B}^{2} \cdot \left(\frac{k-18}{4}\right) \\ + F_{A}\left[\operatorname{tr}F_{SU(3)}^{2} + \operatorname{tr}F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr}R^{2}\right] \cdot \left(\frac{k-9}{2}\right) \\ + F_{B}\left[\frac{1}{8}F_{B}^{2} + \frac{1}{48}F_{A}^{2} + \operatorname{tr}F_{SU(3)}^{2} + \operatorname{tr}F_{SO(8)}^{2} + \frac{7}{48}\operatorname{tr}R^{2}\right] \cdot \left(\frac{p-q}{2}\right)$$

• For p = q, $U(1)_B$ is omalous, while $U(1)_A$ is always anomalous

• Remnant universality: Coefficients of non-Abelian groups from one E_8 are equal, and proportional to gravitational anomaly (only true if one E_8 unbroken)

 ↓
 16 / 28

Axions β_r shift under $U(1)_{A,B}$ – universal axion does not! $\Rightarrow U(1)_A$ and $U(1)_B$ always massive, even if one of them is omalous:

$$\int_X H_3 \wedge *H_3 = A^I_\mu A^{\mu J} M^2_{IJ} + \cdots, \qquad M^2_{IJ} = V^I_r V^J_s \cdot \int_X E_r \wedge *_6 E_s$$

Mass matrix is positive definite and always rank-two (and depends on the Kähler parameters)

Axions β_r shift under $U(1)_{A,B}$ – universal axion does not! $\Rightarrow U(1)_A$ and $U(1)_B$ always massive, even if one of them is omalous:

$$\int_X H_3 \wedge *H_3 = A^I_\mu A^{\mu J} M^2_{IJ} + \cdots, \qquad M^2_{IJ} = V^I_r V^J_s \cdot \int_X E_r \wedge *_6 E_s$$

Mass matrix is positive definite and always rank-two (and depends on the Kähler parameters)

 \rightarrow Stueckelberg mass possible without anomaly (but not vice versa) Note: Still a coupling of the universal axion to X_4 , as required by supersymmetry

1 Green–Schwarz Mechanism and Universality

2 Heterotic Models

3 Remnant Discrete Symmetries

C. Lüdeling (bctp)

< □18 / 28

Remnant non-*R* symmetries: discrete subgroup of $U(1)_A \times U(1)_B$ which leaves VEVs invariant Blow-up modes:

$$\mathbf{1}_{4,0}\,,\quad \mathbf{1}_{-2,-2}\,,\quad \mathbf{1}_{-2,2}$$

 \Rightarrow discrete remnant $\mathbb{Z}_4 \times \mathbb{Z}_4$, generated by

$$T_{\pm}:\phi_{(q_A,q_B)}\longrightarrow \exp\left\{\frac{2\pi i}{4}\left(q_A\pm q_B\right)\right\}\phi_{(q_A,q_B)}$$

However: Charges of all massless fields are even under both $\mathbb{Z}_4s \rightsquigarrow only \mathbb{Z}_2 \times \mathbb{Z}_2$ realised on massless spectrum

Both \mathbb{Z}_2 factors are omalous

- *R* symmetries do not commute with SUSY $\leftrightarrow \theta$ transforms, and different components of SUSY multiplets have different charges
- Only defined up to mixing with non-R symmetries
- For N = 1 SUSY, only one θ → only one U(1) or Z_N R symmetry otherwise can redefine generators such that only one acts on θ
- Usual convention: θ has charge 1 ⇒ Superpotential W has charge 2
 (~ Z₂ doesn't really count as an R symmetry)

- *R* symmetries do not commute with SUSY $\leftrightarrow \theta$ transforms, and different components of SUSY multiplets have different charges
- Only defined up to mixing with non-R symmetries
- For N = 1 SUSY, only one θ → only one U(1) or Z_N R symmetry otherwise can redefine generators such that only one acts on θ
- Usual convention: θ has charge 1 ⇒ Superpotential W has charge 2
 (~ Z₂ doesn't really count as an R symmetry)
- In compactifications, internal Lorentz transformations treat spinors and scalars differently ~> can lead to R symmetries in 4D
- Orbifolds are special points in moduli space, so expect more symmetries in particular, for general smooth spaces, expect no *R* symmetry in general

R Symmetries from Orbifolds

R transformations from sublattice rotations act as

$$\mathcal{R}:\Phi\longrightarrow e^{2\pi {\sf i} v R}\Phi$$

where (for Z_3 orbifolds) $v = \left(\frac{1}{3}, 0, 0\right)$, $R = q_{\mathsf{sh}} - \Delta N$

R Symmetries from Orbifolds

 ${\it R}$ transformations from sublattice rotations act as

$$\mathcal{R}: \Phi \longrightarrow e^{2\pi i v R} \Phi$$

where (for Z_3 orbifolds) $v = \left(\frac{1}{3}, 0, 0\right)$, $R = q_{sh} - \Delta N$ Symmetry conventions somewhat tricky:

- For bosons, both v and R quantised in units of $\frac{1}{3}$, so \mathbb{Z}_9 symmetry (i.e. $\mathcal{R}^9 = 1$)
- For fermions, $R^{f} = R^{b} (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, so θ has charge $\frac{1}{6}$ (i.e. \mathbb{Z}_{6} "*R* symmetry")
- Hence: \mathbb{Z}_{18} symmetry with charges for

$$(bosons, fermions, \theta) = \frac{1}{18} (2n, 2n - 3, 3)$$

• Can redefine charges such that θ has charge 1 and superpotential has charge 2 mod 6, but then fields have non-integer charges

C. Lüdeling (bctp)

< □

Our blow-up modes have

$$R = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

Seek unbroken combinations of the three sublattice rotations and $U(1)_{A,B}$:

$$\begin{split} \mathbf{1}_{4,0} &\longrightarrow \mathcal{R}_1^p \, \mathcal{R}_2^q \, \mathcal{R}_3^r \, T_A \, T_B \mathbf{1}_{4,0} = \mathbf{1}_{4,0} \,, \\ \mathbf{1}_{-2,-2} &\longrightarrow \mathcal{R}_1^p \, \mathcal{R}_2^q \, \mathcal{R}_3^r \, T_A \, T_B \mathbf{1}_{-2,-2} = \mathbf{1}_{-2,-2} \,, \\ \mathbf{1}_{-2,2} &\longrightarrow \mathcal{R}_1^p \, \mathcal{R}_2^q \, \mathcal{R}_3^r \, T_A \, T_B \mathbf{1}_{-2,2} = \mathbf{1}_{-2,2} \end{split}$$

However, this implies $p + q + r = 3 \Rightarrow$ only a \mathbb{Z}_2 *R* symmetry survives in blow-up

< 47 →

[Witten '93;Groot Nibbelink '10; Blaszczyk et al. '11] Algebraically, describe the orbifold by ($\mathbb{P}^2[3]$ is a \mathcal{T}^2)

$$\frac{\mathbb{P}^2[3] \times \mathbb{P}^2[3] \times \mathbb{P}^2[3]}{\mathbb{Z}_3}$$

Blowup (crepant resolution) in (0,2) GLSM description:

- 2D supersymmetric field theory with *U*(1) gauge symmetries, fields~coordinates
- Geometry given by *F* and *D* term equations, GLSM FI terms become CY Kähler parameters
- In IR, flows to worldsheet description
- To resolve singularities, introduce extra coordinates (exceptional divisors) and U(1)s
- Gauge bundle given by "chiral-Fermi" superfields Λ_I with charges determined by the bundle vectors

√ ⊕ → 23 / 28 Set of F and D terms fixes geometry.

 \exists discrete transformations of the fields which leave F and D terms invariant

 $\rightsquigarrow R$ symmetries if holomorphic three-form Ω transforms [Witten 85]

 $\Omega \sim \eta^{T} \Gamma_{ijk} \eta dz^{i} dz^{j} dz^{k} \quad \Rightarrow \quad Q_{R}(\Omega) = Q_{R}(W) = 2$

Different types of R symmetries:

- Phases $z \to e^{2\pi i/3}z$: always possible (but see next slide) $\rightsquigarrow \mathbb{Z}_6 R$ symmetries
- Permutations of fields: Only possible for special values of Kähler parameters – corresponds to groupwise exchange of exceptional divisors

< 67 →

 \mathbb{P}^2 coordinates $z_{i\alpha}$ only appear as $z_{i\alpha}^3$ or $|z_{i\alpha}|^2$ \Rightarrow unbreakable \mathbb{Z}_3 rotations? (Presumably) broken by marginal deformations of Kähler potential terms in presence of gauge bundles (correspond to massless charged matter, ϕ_{4d} 4D modes)

$$\int d^2\theta^+ \phi_{4d}(x^\mu) N(z) \underbrace{\Lambda \overline{\Lambda}}_{\text{gauge bundle fields}}$$

Fits with orbifold: Bundle corresponds to blowup Presence of deformations controlled by Kähler (FI) parameters \Rightarrow Generically, no *R* symmetry in blow-up (all FI terms large), but enhanced at certain loci of parameter space

< 🗗 ト

1 Green–Schwarz Mechanism and Universality

2 Heterotic Models

3 Remnant Discrete Symmetries

< 67 →

- Discussed (discrete) symmetries in 4D low-energy theories from the heterotic string
- Anomalies are generically not universal: Not required for anomaly cancellation, not generic from unification
- orbifold anomalous U(1) is the exception because it is cancelled by the universal axion
- For blowups of heterotic orbifolds, many axions possible

- Discussed (discrete) symmetries in 4D low-energy theories from the heterotic string
- Anomalies are generically not universal: Not required for anomaly cancellation, not generic from unification
- orbifold anomalous U(1) is the exception because it is cancelled by the universal axion
- For blowups of heterotic orbifolds, many axions possible
- Line bundles do reduce the rank via the axion shift also omalous U(1)s can become massive
- Blow-ups can leave gauged discrete subgroups unbroken important for phenomenology
- On orbifold, R symmetries exist but are broken by the blow-up

< 🗗 >

- Found nice agreement between orbifold and blow-up picture, up to some subtleties
- "Geometry part" of GLSM generically has many "unbreakable" *R*-like symmetries – seem to be broken by the gauge bundle, but better understanding of their breaking required
- Linked to determination of charged massless spectrum
- Non-generic type of *R* symmetries: Exchange symmetries, appearing for certain loci in Kähler moduli space, e.g. exchange of exceptional divisors if their volumes are equal
- Study these symmetries for more realistic models, including Wilson lines etc.

< 47 →