(Non-)Universal Anomalies and Discrete Symmetries from the Heterotic String

Christoph Lüdeling bctp and PI, University of Bonn

Planck 2012, Warsaw

CL, Fabian Ruehle, Clemens Wieck
PRD 85 [arXiv:1203.5789] and work in progress

Motivation

- MSSM superpotential contains (potentially) bad terms:

$$
\begin{aligned}
W_{\mathrm{bad}} \supset & \mu H_{u} H_{d}+Q L d^{c}+u^{c} d^{c} d^{c}+L L e^{c} \\
& +Q Q Q L+u^{c} u^{c} d^{c} e^{c}+\cdots
\end{aligned}
$$

- Forbid/constrain these operators by (discrete) symmetries, (matter parity, proton hexality, $\mathbb{Z}_{4}^{R}, \ldots$)
- In string constructions, discrete symmetries can arise as remnants of gauge and internal Lorentz symmetries

Motivation

- MSSM superpotential contains (potentially) bad terms:

$$
\begin{gathered}
W_{\mathrm{bad}} \supset \mu H_{u} H_{d}+Q L d^{c}+u^{c} d^{c} d^{c}+L L e^{c} \\
+Q Q Q L+u^{c} u^{c} d^{c} e^{c}+\cdots
\end{gathered}
$$

- Forbid/constrain these operators by (discrete) symmetries, (matter parity, proton hexality, $\mathbb{Z}_{4}^{R}, \ldots$)
- In string constructions, discrete symmetries can arise as remnants of gauge and internal Lorentz symmetries
- Discuss anomalies in such models (bottom-up) and the appearance of discrete symmetries in the $E_{8} \times E_{8}$ heterotic string
- Simple example: Consider \mathbb{Z}_{3} orbifold, its blowup and GLSM realisation

Contents

(1) Green-Schwarz Mechanism and Universality
(2) Heterotic Models
(3) Remnant Discrete Symmetries
(4) Conclusion

Anomalies in MSSM Extensions

Anomalies

- determined by chiral spectrum
- given in terms of anomaly polynomial I_{6} (via descent equations) [Wess, Zumino '71; Stora '84; Alvarez-Gaumé, Ginsparg '84]
- insensitive to continuous deformations

Anomalies in MSSM Extensions

Anomalies

- determined by chiral spectrum
- given in terms of anomaly polynomial I_{6} (via descent equations) [Wess, Zumino '71; Stora '84; Alvarez-Gaumé, Ginsparg '84]
- insensitive to continuous deformations

Require:

- $U(1)_{A}^{2}-U(1)_{Y}$ anomaly should vanish
- for \mathbb{Z}_{N} symmetries, only $G^{2}-\mathbb{Z}_{N}$ meaningful
[Ibanez, Ross '91; Banks, Dine '92; Araki et al. '08]

Green-Schwarz Mechanism

[Green, Schwarz '84]
Cancel transformation of measure with variation of action - requires
a) factorisation of anomaly polynomial, $I_{6}=X_{4} Y_{2}$, i.e. $Y_{2}=F_{2}=\mathrm{d} A_{1}$
b) axion field a with shift gauge transformation

$$
\delta a=-Y_{0}^{(1)}=-\lambda
$$

Green-Schwarz Mechanism

[Green, Schwarz '84]
Cancel transformation of measure with variation of action - requires
a) factorisation of anomaly polynomial, $I_{6}=X_{4} Y_{2}$, i.e. $Y_{2}=F_{2}=\mathrm{d} A_{1}$
b) axion field a with shift gauge transformation

$$
\delta a=-Y_{0}^{(1)}=-\lambda
$$

c) axion coupling to X_{4}

$$
S_{\mathrm{GS}}=\int a X_{4}+\cdots \Rightarrow \delta S_{\mathrm{GS}}=-\int I_{4}^{(1)}
$$

- Needs shift and coupling
- Dualise a to two-form B_{2} : exchange $Y_{2} \leftrightarrow X_{4}$, shift \leftrightarrow coupling
- Generalisation: sum of factorised anomalies $I_{6}=\sum_{a} Y^{a} X^{a}$ is cancelled by set of axions

Green-Schwarz Axion

$Y_{2}=\mathrm{d} A_{A}$ is field strength of the "anomalous $U(1)$ ", axion transforms with a shift

$$
\Longrightarrow S_{a, \mathrm{kin}}=\int \frac{1}{2}\left|\mathrm{~d} a+A_{A}\right|^{2}
$$

Green-Schwarz Axion

$Y_{2}=\mathrm{d} A_{A}$ is field strength of the "anomalous $U(1)$ ", axion transforms with a shift

$$
\Longrightarrow S_{a, \text { kin }}=\int \frac{1}{2}\left|\mathrm{~d} a+A_{A}\right|^{2}
$$

- Axion kinetic term gives Stueckelberg mass term for $U(1)_{A} \Rightarrow$ anomalous $U(1)$ s massive, but remain as (perturbative) selection rules
- X_{4} contains field strengths of other gauge group factors G_{i}, weighted with (arbitrary) anomaly coefficients:

$$
X_{4}=A_{\operatorname{grav}-U(1)} \operatorname{tr} R^{2}+\sum_{i} A_{G_{i}^{2}-U(1)_{A}} \operatorname{tr} F_{i}^{2}
$$

- Special case: If anomaly is cancelled by Kalb-Ramond b_{2} $\Rightarrow X_{4}$ is reduction of $10 \mathrm{D} X_{4}^{\text {uni }}$, and universal axion a_{0} couples universally to all gauge groups

Anomaly Coefficients: MSSM with extra $U(1)$ or \mathbb{Z}_{N}

Take MSSM with additional $U(1)_{X}$, charges $q_{Q}, \ldots, q_{H_{d}}$ \rightsquigarrow Anomaly coefficients generically not universal Impose e.g.

- allowed Yukawa couplings,
- $U(1)_{X}$ is flavour-blind and commutes with $S U(5)$ (but assume doublet-triplet splitting, i.e. no Higgs triplets),
- may or may not be an R symmetry (i.e. $R=0$ or $R=1$)

$$
\begin{aligned}
& A_{S U(3)^{2}-U(1)_{X}}=3\left(3 q_{10}+q_{5}\right)-6, \\
& A_{S U(2)^{2}-U(1)_{X}}=2\left(3 q_{10}+q_{5}\right)-6, \\
& A_{U(1)_{Y}^{2}-U(1)_{X}}=2\left(3 q_{10}+q_{5}\right)-9 .
\end{aligned}
$$

Universality from Underlying GUT?

- Unbroken GUT: Anomaly coefficients universal (duh)
- After GUT breaking: Depends on mechanism!
- 4D: Breaking by VEVs removes vector-like states (under unbroken group)
\rightsquigarrow no change to anomalies
- VEVs are continuous deformations

Universality from Underlying GUT?

- Unbroken GUT: Anomaly coefficients universal (duh)
- After GUT breaking: Depends on mechanism!
- 4D: Breaking by VEVs removes vector-like states (under unbroken group)
\rightsquigarrow no change to anomalies
- VEVs are continuous deformations
- Higher-dimensional models: 4D chiral spectrum formed by zero modes of internal Dirac operators
- Number of zero modes depends on discrete choices: boundary conditions, fluxes \rightsquigarrow change in anomalies

Example: Broken $\operatorname{SU}(5)$

Anomalies get contributions from matter, gauginos and Higgses:

Matter	gauginos		Higgses			
$\overline{\mathbf{5}}, \mathbf{1 0}$	SM		X, Y	3's		2's
$A_{5}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$	$+5 R$		$+C_{H}$			
$A_{3}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$	$+3 R$	$+2 R$	$+C_{H}$			
$A_{2}=\frac{3}{2}\left(3 q_{10}+q_{\overline{5}}-4 R\right)$	$+2 R$	$+3 R$		$+C_{H}$		
$A_{1}=\frac{3}{2}\left(3 q_{10}+q_{\overline{5}}-4 R\right)$		$+5 R$	$+\frac{2}{5} C_{H}$	$+\frac{3}{5} C_{H}$		

$\left(C_{H}=\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}-2 R\right)\right)$

- For unbroken $S U(5), A_{3}=A_{2}=A_{1}=A_{5}$

Example: Broken $\operatorname{SU}(5)$

Anomalies get contributions from matter, gauginos and Higgses:

Matter	gauginos		Higgses	
$\overline{\mathbf{5}}, \mathbf{1 0}$	SM	X, Y	3's	
2's				
$A_{5}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$	$+5 R$		$+C_{H}$	
$A_{3}=\frac{3}{2}\left(3 q_{10}+q_{\overline{5}}-4 R\right)$	$+3 R$	$+2 R$	$+C_{H}$	
$A_{2}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$	$+2 R$	$+R$		$+C_{H}$
$A_{1}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$		$+5 R$	$+\frac{2}{5} C_{H}$	$+\frac{3}{5} C_{H}$

$\left(C_{H}=\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}-2 R\right)\right)$

- For unbroken $S U(5), A_{3}=A_{2}=A_{1}=A_{5}$
- $\operatorname{SU}(5)$ breaking removes X, Y gauginos \rightsquigarrow non-universality for R symmetries

Example: Broken $\operatorname{SU}(5)$

Anomalies get contributions from matter, gauginos and Higgses:

Matter	gauginos		Higgses			
$\overline{\mathbf{5}}, \mathbf{1 0}$	SM		X, Y	3's		2's
$A_{5}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$	$+5 R$		$+C_{H}$			
$A_{3}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$	$+3 R$	$+2 R$	$+C_{H} /$			
$A_{2}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$	$+2 R$	$+R$		$+C_{H}$		
$A_{1}=\frac{3}{2}\left(3 q_{10}+q_{5}-4 R\right)$		$+5 R$	$+\frac{2}{5} C_{A}$	$+\frac{3}{5} C_{H}$		

$\left(C_{H}=\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}-2 R\right)\right)$

- For unbroken $S U(5), A_{3}=A_{2}=A_{1}=A_{5}$
- $\operatorname{SU}(5)$ breaking removes X, Y gauginos \rightsquigarrow non-universality for R symmetries
- doublet-triplet splitting \rightsquigarrow generic non-universality

More Possibilities, e.g. for $G_{S M} \times \mathbb{Z}_{N}$

| Operator | | | |
| :---: | :--- | :--- | :--- | :--- |
| $\left(L H_{u}\right)^{2}$ | | | |
| $H_{u} H_{d}$ | | | |
| $L H_{u}$ | | | |
| $10 \overline{5} \overline{5}$ | | | |
| $101010 \overline{5}$ | | | |
| $101010 H_{d}$ | | | |
| $L H_{u} H_{d} H_{u}$ | | | |

More Possibilities, e.g. for $G_{S M} \times \mathbb{Z}_{N}$

| Operator | SM Yukawas | Weinberg Op. | |
| :---: | :---: | :---: | :--- | :--- |
| $\left(L H_{u}\right)^{2}$ | $4 R-4 q_{\mathbf{1 0}}+2 q_{\overline{5}}$ | $2 R$ | |
| $H_{u} H_{d}$ | $4 R-3 q_{\mathbf{1 0}}-q_{\overline{5}}$ | $5 R-5 q_{\mathbf{1 0}}+k \frac{N}{2}$ | |
| $L H_{u}$ | $2 R-2 q_{\mathbf{1 0}}+q_{\overline{5}}$ | $R+k \frac{N}{2}$ | |
| $\mathbf{1 0} \overline{\mathbf{5}} \overline{\mathbf{5}}$ | $q_{\mathbf{1 0}}+2 q_{\overline{\mathbf{5}}}$ | $-2 R+5 q_{\mathbf{1 0}}$ | |
| $\mathbf{1 0 1 0 1 0 5}$ | $3 q_{\mathbf{1 0}}+q_{\overline{5}}$ | $-R+5 q_{\mathbf{1 0}}+k \frac{N}{2}$ | |
| $\mathbf{1 0 1 0 1 0} H_{d}$ | $4 R+2 q_{\mathbf{1 0}}-q_{\overline{5}}$ | $3 R+k \frac{N}{2}$ | |
| $L H_{u} H_{d} H_{u}$ | $6 R-5 q_{\mathbf{1 0}}$ | $6 R-5 q_{\mathbf{1 0}}$ | |

More Possibilities, e.g. for $G_{S M} \times \mathbb{Z}_{N}$

Operator	SM Yukawas	Weinberg Op.	\mathbb{Z}_{6}^{X}	
$\left(L H_{u}\right)^{2}$	$4 R-4 q_{\mathbf{1 0}}+2 q_{\overline{5}}$	$2 R$	0	
$H_{u} H_{d}$	$4 R-3 q_{\mathbf{1 0}}-q_{\overline{5}}$	$5 R-5 q_{\mathbf{1 0}}+k \frac{N}{2}$	4	
$L H_{u}$	$2 R-2 q_{\mathbf{1 0}}+q_{\overline{5}}$	$R+k \frac{N}{2}$	3	
$\mathbf{1 0 5} \overline{\mathbf{5}}$	$q_{\mathbf{1 0}}+2 q_{\overline{\mathbf{5}}}$	$-2 R+5 q_{\mathbf{1 0}}$	5	
$\mathbf{1 0 1 0 1 0} \mathbf{5}$	$3 q_{\mathbf{1 0}}+q_{\overline{5}}$	$-R+5 q_{\mathbf{1 0}}+k \frac{N}{2}$	2	
$\mathbf{1 0 1 0 1 0} H_{d}$	$4 R+2 q_{\mathbf{1 0}}-q_{\overline{\mathbf{5}}}$	$3 R+k \frac{N}{2}$	3	
$L H_{u} H_{d} H_{u}$	$6 R-5 q_{\mathbf{1 0}}$	$6 R-5 q_{\mathbf{1 0}}$	1	

\rightsquigarrow forbid all bad terms e.g. by non- $R \mathbb{Z}_{6}^{X}$ with

$$
q_{10}=1, \quad q_{5}=5, \quad q_{H_{u}}=4, \quad q_{H_{d}}=0
$$

\mathbb{Z}_{2} matter parity as subgroup

More Possibilities, e.g. for $G_{S M} \times \mathbb{Z}_{N}$

Operator	SM Yukawas	Weinberg Op.	\mathbb{Z}_{6}^{X}	$S O(10)$
$\left(L H_{u}\right)^{2}$	$4 R-4 q_{\mathbf{1 0}}+2 q_{\overline{5}}$	$2 R$	0	$2 R$
$H_{u} H_{d}$	$4 R-3 q_{\mathbf{1 0}}-q_{\overline{5}}$	$5 R-5 q_{\mathbf{1 0}}+k \frac{N}{2}$	4	0
$L H_{u}$	$2 R-2 q_{\mathbf{1 0}}+q_{\overline{5}}$	$R+k \frac{N}{2}$	3	R
$\mathbf{1 0} \overline{\mathbf{5}} \overline{\mathbf{5}}$	$q_{\mathbf{1 0}}+2 q_{\overline{\mathbf{5}}}$	$-2 R+5 q_{\mathbf{1 0}}$	5	$3 R$
$\mathbf{1 0 1 0 1 0} \mathbf{5}$	$3 q_{\mathbf{1 0}}+q_{\overline{5}}$	$-R+5 q_{\mathbf{1 0}}+k \frac{N}{2}$	2	$4 R$
$\mathbf{1 0 1 0 1 0} H_{d}$	$4 R+2 q_{\mathbf{1 0}}-q_{\overline{5}}$	$3 R+k \frac{N}{2}$	3	$3 R$
$L H_{u} H_{d} H_{u}$	$6 R-5 q_{\mathbf{1 0}}$	$6 R-5 q_{\mathbf{1 0}}$	1	R

\rightsquigarrow forbid all bad terms e.g. by non- $R \mathbb{Z}_{6}^{X}$ with

$$
q_{10}=1, \quad q_{\overline{5}}=5, \quad q_{H_{u}}=4, \quad q_{H_{d}}=0
$$

\mathbb{Z}_{2} matter parity as subgroup
Requiring $S O(10)$ relations for matter, we need $R=1$

Contents

(1) Green-Schwarz Mechanism and Universality

(2) Heterotic Models

(3) Remnant Discrete Symmetries

(4) Conclusion

Overview of Heterotic GS Mechanisms

In heterotic models, all axions arise from B_{2} in 10D with transformation Distinguish Orbifolds and smooth Calabi-Yaus with vector bundles:

Orbifolds	Calabi-Yau X with Gauge Bundle
single two-form $b_{2} \leftrightarrow$ universal ax-	$\begin{array}{l}B_{2}=b_{2}+\beta_{r} E_{r}, E_{r} \in H^{2}(X) \rightsquigarrow \\ \text { additional axions } \beta_{r}\end{array}$
ion a_{0}	

Universality: a couples to reduc-

tion of X_{4}^{uni}\end{array} \quad $$
\begin{array}{l}\text { remnants of universality }\end{array}
$$\right\}\)| (at most) one anomalous $U(1)$ (de- |
| :--- |
| termined by shift of $\left.a_{0}\right)$ |\quad| Number of anomalous $U(1)$ s given |
| :--- |
| by rank of bundle |

T^{6} / \mathbb{Z}_{3} Orbifold

For illustration, consider simple T^{6} / \mathbb{Z}_{3} orbifold model

$V=\frac{1}{3}\left(1,1,-2,0^{5}\right)\left(0^{8}\right)$, no Wilson lines
\Rightarrow standard embedding, 27 equivalent fixed points

$$
\begin{array}{cc}
\text { Gauge group } & E_{6} \times S U(3)\left[\times E_{8}\right] \\
\text { spectrum } & 3(\mathbf{2 7}, \overline{\mathbf{3}})+27[(\mathbf{2 7}, \mathbf{1})+3(\mathbf{1}, \mathbf{3})]
\end{array}
$$

In particular, no anomalous $U(1)$, hence universal axion does not shift under gauge transformations, and no FI term has to be cancelled

Blowup

[Groot Nibbelink et al. 07-09]
Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing out singularities - connection to smooth Calabi-Yau with bundles In particular: VEVs for twisted non-oscillator states $(\mathbf{2 7}, \mathbf{1})$
\leftrightarrow line bundles (i.e. Abelian fluxes)

Blowup

[Groot Nibbelink et al. 07-09]

Idea: VEVs for twisted states (blow-up modes) corresponds to smoothing out singularities - connection to smooth Calabi-Yau with bundles In particular: VEVs for twisted non-oscillator states $(\mathbf{2 7}, \mathbf{1})$
\leftrightarrow line bundles (i.e. Abelian fluxes)
Procedure:
(1) Replace fixed points by exceptional divisors $E_{r}\left(\mathbb{P}^{2} s\right)$
(2) Turn on Abelian gauge flux along the exceptional divisors,

$$
\mathcal{F}=V_{r}^{\prime} H_{l} E_{r}, \quad H_{l}: \text { Cartan generators of } E_{8}
$$

(automatically $(1,1)$-form)
Note: Line bundles don't reduce rank, axion shifts do:

$$
B_{2}=b_{2}-\beta_{r} E_{r}, \quad \delta B_{2}=-\operatorname{tr} \lambda \mathcal{F} \Rightarrow \delta \beta_{r}=\operatorname{tr} \lambda V_{r}
$$

Bundle Vectors

Bundle has to satisfy DUY eqns. (analogue of D-term equation)

$$
0=\frac{1}{2} \int_{X} J \wedge J \wedge \mathcal{F}=\sum_{r} \operatorname{vol}\left(E_{r}\right) V_{r}, \quad \text { with all } \operatorname{vol}\left(E_{r}\right)>0
$$

Take three bundle vectors from p_{sh} of twisted 27 which sum to zero, distribute among exceptional divisors
\rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically DUY eqns. easily satisfied for arbitrary large volumes

Bundle Vectors

Bundle has to satisfy DUY eqns. (analogue of D-term equation)

$$
0=\frac{1}{2} \int_{X} J \wedge J \wedge \mathcal{F}=\sum_{r} \operatorname{vol}\left(E_{r}\right) V_{r}, \quad \text { with all } \operatorname{vol}\left(E_{r}\right)>0
$$

Take three bundle vectors from p_{sh} of twisted 27 which sum to zero, distribute among exceptional divisors
\rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically DUY eqns. easily satisfied for arbitrary large volumes
Each bundle vector breaks $E_{6} \rightarrow S O(10) \times U(1)$, only two are independent.

Bundle Vectors

Bundle has to satisfy DUY eqns. (analogue of D-term equation)

$$
0=\frac{1}{2} \int_{X} J \wedge J \wedge \mathcal{F}=\sum_{r} \operatorname{vol}\left(E_{r}\right) V_{r}, \quad \text { with all } \operatorname{vol}\left(E_{r}\right)>0
$$

Take three bundle vectors from p_{sh} of twisted 27 which sum to zero, distribute among exceptional divisors
\rightsquigarrow flux quantisation and Bianchi Identity fulfilled automatically DUY eqns. easily satisfied for arbitrary large volumes
Each bundle vector breaks $E_{6} \rightarrow S O(10) \times U(1)$, only two are independent.

\Rightarrow gauge group $S O(8) \times U(1)_{A} \times U(1)_{B} \times S U(3)$
Massless spectrum depends on distribution (given by (k, p, q) with $k+p+q=27)$

Blowup Anomalies

Blowup: two $U(1)$'s, different spectrum
\Rightarrow anomaly polynomial $I_{6}=\int_{X} I_{12}$ with backgrounds inserted, or from triangle diagrams

$$
\begin{aligned}
\Rightarrow I_{6} \sim & F_{A}^{3} \cdot\left(\frac{k-6}{12}\right)+F_{A} F_{B}^{2} \cdot\left(\frac{k-18}{4}\right) \\
& +F_{A}\left[\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right] \cdot\left(\frac{k-9}{2}\right) \\
& +F_{B}\left[\frac{1}{8} F_{B}^{2}+\frac{1}{48} F_{A}^{2}+\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right] \cdot\left(\frac{p-q}{2}\right)
\end{aligned}
$$

Blowup Anomalies

Blowup: two $U(1)$'s, different spectrum
\Rightarrow anomaly polynomial $I_{6}=\int_{X} I_{12}$ with backgrounds inserted, or from triangle diagrams

$$
\begin{aligned}
\Rightarrow I_{6} \sim & F_{A}^{3} \cdot\left(\frac{k-6}{12}\right)+F_{A} F_{B}^{2} \cdot\left(\frac{k-18}{4}\right) \\
& +F_{A}\left[\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right] \cdot\left(\frac{k-9}{2}\right) \\
& +F_{B}\left[\frac{1}{8} F_{B}^{2}+\frac{1}{48} F_{A}^{2}+\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right] \cdot\left(\frac{p-q}{2}\right)
\end{aligned}
$$

- For $p=q, U(1)_{B}$ is omalous, while $U(1)_{A}$ is always anomalous

Blowup Anomalies

Blowup: two $U(1)$'s, different spectrum
\Rightarrow anomaly polynomial $I_{6}=\int_{X} I_{12}$ with backgrounds inserted, or from triangle diagrams

$$
\begin{aligned}
\Rightarrow I_{6} \sim & F_{A}^{3} \cdot\left(\frac{k-6}{12}\right)+F_{A} F_{B}^{2} \cdot\left(\frac{k-18}{4}\right) \\
& +F_{A}\left[\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right]\left(\frac{k-9}{2}\right) \\
& +F_{B}\left[\frac{1}{8} F_{B}^{2}+\frac{1}{48} F_{A}^{2}+\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right]\left(\frac{p-q}{2}\right)
\end{aligned}
$$

- For $p=q, U(1)_{B}$ is omalous, while $U(1)_{A}$ is always anomalous
- Remnant universality: Coefficients of non-Abelian groups from one E_{8} are equal, and proportional to gravitational anomaly (only true if one E_{8} unbroken)

Axion Shifts and massive $U(1)_{B}$

Axions β_{r} shift under $U(1)_{A, B}$ - universal axion does not!
$\Rightarrow U(1)_{A}$ and $U(1)_{B}$ always massive, even if one of them is omalous:

$$
\int_{X} H_{3} \wedge * H_{3}=A_{\mu}^{\prime} A^{\mu J} M_{I J}^{2}+\cdots, \quad M_{I J}^{2}=V_{r}^{\prime} V_{s}^{J} \cdot \int_{X} E_{r} \wedge * *_{6} E_{s}
$$

Mass matrix is positive definite and always rank-two (and depends on the Kähler parameters)

Axion Shifts and massive $U(1)_{B}$

Axions β_{r} shift under $U(1)_{A, B}$ - universal axion does not!
$\Rightarrow U(1)_{A}$ and $U(1)_{B}$ always massive, even if one of them is omalous:

$$
\int_{X} H_{3} \wedge * H_{3}=A_{\mu}^{\prime} A^{\mu J} M_{I J}^{2}+\cdots, \quad M_{I J}^{2}=V_{r}^{\prime} V_{s}^{J} \cdot \int_{X} E_{r} \wedge * *_{6} E_{s}
$$

Mass matrix is positive definite and always rank-two (and depends on the Kähler parameters)
\rightarrow Stueckelberg mass possible without anomaly (but not vice versa)
Note: Still a coupling of the universal axion to X_{4}, as required by supersymmetry

Contents

(1) Green-Schwarz Mechanism and Universality

(2) Heterotic Models

(3) Remnant Discrete Symmetries

(4) Conclusion

Gauge Symmetry

Remnant non- R symmetries: discrete subgroup of $U(1)_{A} \times U(1)_{B}$ which leaves VEVs invariant
Blow-up modes:

$$
\mathbf{1}_{4,0}, \quad \mathbf{1}_{-2,-2}, \quad \mathbf{1}_{-2,2}
$$

\Rightarrow discrete remnant $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$, generated by

$$
T_{ \pm}: \phi_{\left(q_{A}, q_{B}\right)} \longrightarrow \exp \left\{\frac{2 \pi \mathrm{i}}{4}\left(q_{A} \pm q_{B}\right)\right\} \phi_{\left(q_{A}, q_{B}\right)}
$$

However: Charges of all massless fields are even under both \mathbb{Z}_{4} s \rightsquigarrow only $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ realised on massless spectrum

Both \mathbb{Z}_{2} factors are omalous

R Symmetries

- R symmetries do not commute with SUSY $\leftrightarrow \theta$ transforms, and different components of SUSY multiplets have different charges
- Only defined up to mixing with non- R symmetries
- For $\mathcal{N}=1$ SUSY, only one $\theta \rightsquigarrow$ only one $U(1)$ or $\mathbb{Z}_{N} R$ symmetry otherwise can redefine generators such that only one acts on θ
- Usual convention: θ has charge $1 \Rightarrow$ Superpotential W has charge 2 ($\curvearrowright \mathbb{Z}_{2}$ doesn't really count as an R symmetry)

R Symmetries

- R symmetries do not commute with SUSY $\leftrightarrow \theta$ transforms, and different components of SUSY multiplets have different charges
- Only defined up to mixing with non- R symmetries
- For $\mathcal{N}=1$ SUSY, only one $\theta \rightsquigarrow$ only one $U(1)$ or $\mathbb{Z}_{N} R$ symmetry otherwise can redefine generators such that only one acts on θ
- Usual convention: θ has charge $1 \Rightarrow$ Superpotential W has charge 2 ($\curvearrowright \mathbb{Z}_{2}$ doesn't really count as an R symmetry)
- In compactifications, internal Lorentz transformations treat spinors and scalars differently \rightsquigarrow can lead to R symmetries in 4D
- Orbifolds are special points in moduli space, so expect more symmetries - in particular, for general smooth spaces, expect no R symmetry in general

R Symmetries from Orbifolds

R transformations from sublattice rotations act as

$$
\mathcal{R}: \Phi \longrightarrow e^{2 \pi i v R} \Phi
$$

where (for Z_{3} orbifolds) $v=\left(\underline{\frac{1}{3}}, 0,0\right), R=q_{\text {sh }}-\Delta N$

R Symmetries from Orbifolds

R transformations from sublattice rotations act as

$$
\mathcal{R}: \Phi \longrightarrow e^{2 \pi i v R} \Phi
$$

where (for Z_{3} orbifolds) $v=\left(\underline{\frac{1}{3}}, 0,0\right), R=q_{\text {sh }}-\Delta N$
Symmetry conventions somewhat tricky:

- For bosons, both v and R quantised in units of $\frac{1}{3}$, so \mathbb{Z}_{9} symmetry (i.e. $\mathcal{R}^{9}=\mathbb{1}$)
- For fermions, $R^{\mathrm{f}}=R^{\mathrm{b}}-\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, so θ has charge $\frac{1}{6}$ (i.e. \mathbb{Z}_{6} " R symmetry")
- Hence: \mathbb{Z}_{18} symmetry with charges for

$$
\text { (bosons, fermions, } \theta)=\frac{1}{18}(2 n, 2 n-3,3)
$$

- Can redefine charges such that θ has charge 1 and superpotential has charge $2 \bmod 6$, but then fields have non-integer charges

Model: VEV picture

Our blow-up modes have

$$
R=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

Seek unbroken combinations of the three sublattice rotations and $U(1)_{A, B}$:

$$
\begin{aligned}
\mathbf{1}_{4,0} & \longrightarrow \mathcal{R}_{1}^{p} \mathcal{R}_{2}^{q} \mathcal{R}_{3}^{r} T_{A} T_{B} \mathbf{1}_{4,0}=\mathbf{1}_{4,0}, \\
\mathbf{1}_{-2,-2} & \longrightarrow \mathcal{R}_{1}^{p} \mathcal{R}_{2}^{q} \mathcal{R}_{3}^{r} T_{A} T_{B} \mathbf{1}_{-2,-2}=\mathbf{1}_{-2,-2}, \\
\mathbf{1}_{-2,2} & \longrightarrow \mathcal{R}_{1}^{p} \mathcal{R}_{2}^{q} \mathcal{R}_{3}^{r} T_{A} T_{B} \mathbf{1}_{-2,2}=\mathbf{1}_{-2,2}
\end{aligned}
$$

However, this implies $p+q+r=3 \Rightarrow$ only a $\mathbb{Z}_{2} R$ symmetry survives in blow-up

Model: GLSM Description

[Witten '93;Groot Nibbelink '10; Blaszczyk et al. '11]
Algebraically, describe the orbifold by $\left(\mathbb{P}^{2}[3]\right.$ is a $\left.T^{2}\right)$

$$
\frac{\mathbb{P}^{2}[3] \times \mathbb{P}^{2}[3] \times \mathbb{P}^{2}[3]}{\mathbb{Z}_{3}}
$$

Blowup (crepant resolution) in $(0,2)$ GLSM description:

- 2D supersymmetric field theory with $U(1)$ gauge symmetries, fields \sim coordinates
- Geometry given by F and D term equations, GLSM FI terms become CY Kähler parameters
- In IR, flows to worldsheet description
- To resolve singularities, introduce extra coordinates (exceptional divisors) and $U(1) s$
- Gauge bundle given by "chiral-Fermi" superfields $\Lambda_{\text {I }}$ with charges determined by the bundle vectors

R Symmetries in the GLSM

Set of F and D terms fixes geometry.
\exists discrete transformations of the fields which leave F and D terms invariant
$\rightsquigarrow R$ symmetries if holomorphic three-form Ω transforms

$$
\Omega \sim \eta^{T} \Gamma_{i j k} \eta \mathrm{~d} z^{i} \mathrm{~d} z^{j} \mathrm{~d} z^{k} \quad \Rightarrow \quad Q_{R}(\Omega)=Q_{R}(W)=2
$$

Different types of R symmetries:

- Phases $z \rightarrow e^{2 \pi i / 3} z$: always possible (but see next slide) $\rightsquigarrow \mathbb{Z}_{6} R$ symmetries
- Permutations of fields: Only possible for special values of Kähler parameters - corresponds to groupwise exchange of exceptional divisors

R Symmetry breaking in GLSM

\mathbb{P}^{2} coordinates $z_{i \alpha}$ only appear as $z_{i \alpha}^{3}$ or $\left|z_{i \alpha}\right|^{2}$
\Rightarrow unbreakable \mathbb{Z}_{3} rotations?
(Presumably) broken by marginal deformations of Kähler potential terms in presence of gauge bundles (correspond to massless charged matter, $\phi_{4 \mathrm{~d}}$ 4D modes)

$$
\int \mathrm{d}^{2} \theta^{+} \phi_{4 \mathrm{~d}}\left(x^{\mu}\right) N(z) \underbrace{\Lambda \bar{\Lambda}}_{\text {gauge bundle fields }}
$$

Fits with orbifold: Bundle corresponds to blowup
Presence of deformations controlled by Kähler (FI) parameters \Rightarrow Generically, no R symmetry in blow-up (all FI terms large), but enhanced at certain loci of parameter space

Contents

(1) Green-Schwarz Mechanism and Universality

(2) Heterotic Models

(3) Remnant Discrete Symmetries

(4) Conclusion

Conclusions

- Discussed (discrete) symmetries in 4D low-energy theories from the heterotic string
- Anomalies are generically not universal: Not required for anomaly cancellation, not generic from unification
- orbifold anomalous $U(1)$ is the exception because it is cancelled by the universal axion
- For blowups of heterotic orbifolds, many axions possible

Conclusions

- Discussed (discrete) symmetries in 4D low-energy theories from the heterotic string
- Anomalies are generically not universal: Not required for anomaly cancellation, not generic from unification
- orbifold anomalous $U(1)$ is the exception because it is cancelled by the universal axion
- For blowups of heterotic orbifolds, many axions possible
- Line bundles do reduce the rank via the axion shift - also omalous $U(1)$ s can become massive
- Blow-ups can leave gauged discrete subgroups unbroken - important for phenomenology
- On orbifold, R symmetries exist but are broken by the blow-up

Outlook

- Found nice agreement between orbifold and blow-up picture, up to some subtleties
- "Geometry part" of GLSM generically has many "unbreakable" R-like symmetries - seem to be broken by the gauge bundle, but better understanding of their breaking required
- Linked to determination of charged massless spectrum
- Non-generic type of R symmetries: Exchange symmetries, appearing for certain loci in Kähler moduli space, e.g. exchange of exceptional divisors if their volumes are equal
- Study these symmetries for more realistic models, including Wilson lines etc.

