Fixing D7 Brane Positions by F-Theory Fluxes

Christoph Lüdeling bctp and PI, University of Bonn

A. Braun, A. Hebecker, CL, R. Valandro, Nucl.Phys.B815:256-287,2009 [arXiv:0811.2416 [hep-th]]

Motivation

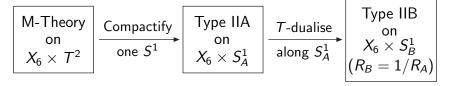
- \bullet F-Theory: Nonperturbative version of type IIB string theory $$[{\sf Vafa};{\sf Sen}]$$
- Add two auxiliary dimensions, singularities of compactification manifold encode brane positions
- Recently, lots of interest in F-theory for model building interest
 [Beasley, Heckman, Vafa; Saulina, Schäfer-Nameki; Bourjaily; Tatar, Watari...]
- Local models do not address global constraints like tadpole cancellation
- Four-form flux can stabilise moduli, including brane positions
- Simple example: F-Theory on $K3 \times K3$, where is an elliptic fibration over \mathbb{P}^1 [Görlich et al.; Lust et al.; Aspinwall, Kallosh; Dasgupta et a
- ullet Includes as special case the type IIB orientifold $K3 imes \mathcal{T}^2/\mathbb{Z}_2$

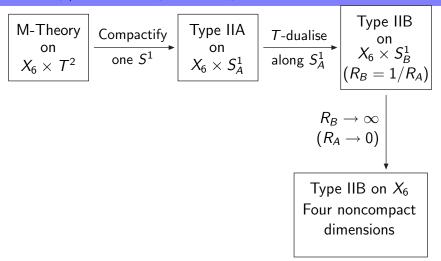
[Angelantonj et al.

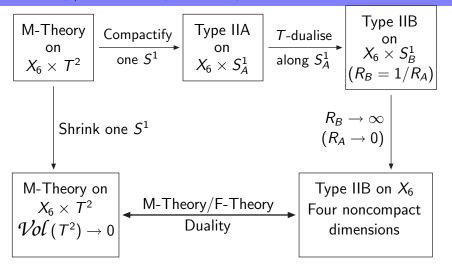
Motivation

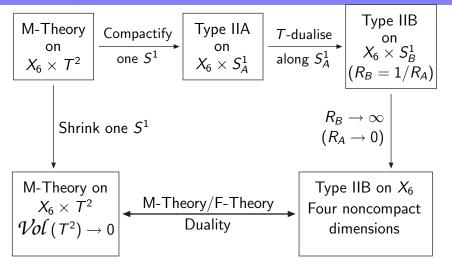
- \bullet F-Theory: Nonperturbative version of type IIB string theory $$[{\sf Vafa};{\sf Sen}]$$
- Add two auxiliary dimensions, singularities of compactification manifold encode brane positions
- Recently, lots of interest in F-theory for model building interest
 [Beasley, Heckman, Vafa; Saulina, Schäfer-Nameki; Bourjaily; Tatar, Watari...]
- Local models do not address global constraints like tadpole cancellation
- Four-form flux can stabilise moduli, including brane positions
- Simple example: F-Theory on $K3 \times K3$, where is an elliptic fibration over \mathbb{P}^1 [Görlich et al.; Lust et al.; Aspinwall, Kallosh; Dasgupta et al.]
- \bullet Includes as special case the type IIB orientifold $\textit{K}3\times \textit{T}^2/\mathbb{Z}_2$

[Angelantonj et al.]









K3: Calabi-Yau Two-Fold

- $H^2(K3,\mathbb{R})$ has signature (3,19)
- Holomorphic two-form and Kähler form spanned by three real forms ω_i with $\omega_i \cdot \omega_i = \delta_{ii}$ and overall volume ν :

$$\omega = \omega_1 + i\omega_2 \qquad \qquad j = \sqrt{2\nu}\,\omega_3$$

- K3 is hyperkähler, i.e. SO(3) rotating the $\omega_i \leadsto$ geometry fixed by positive-norm three-plane $\Sigma \subset H^2(K3,\mathbb{R})$ and ν
- Moduli space has $3 \times 19 + 1 = 58$ dimensions
- Integral basis for $H^2(K3)$ with intersection matrix

$$U \oplus U \oplus U \oplus (-E_8) \oplus (-E_8)$$
, where $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and E_8 is

Cartan matrix of E_8

 \Rightarrow The ω_i must have components along the U blocks, components along " E_8 directions" determine gauge grou

K3: Calabi-Yau Two-Fold

- $H^2(K3,\mathbb{R})$ has signature (3,19)
- Holomorphic two-form and Kähler form spanned by three real forms ω_i with $\omega_i \cdot \omega_j = \delta_{ij}$ and overall volume ν :

$$\omega = \omega_1 + i\omega_2 \qquad \qquad j = \sqrt{2\nu}\,\omega_3$$

- K3 is hyperkähler, i.e. SO(3) rotating the $\omega_i \leadsto$ geometry fixed by positive-norm three-plane $\Sigma \subset H^2(K3,\mathbb{R})$ and ν
- Moduli space has $3 \times 19 + 1 = 58$ dimensions
- Integral basis for $H^2(K3)$ with intersection matrix

$$U\oplus U\oplus U\oplus (-E_8)\oplus (-E_8)$$
, where $U=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}$ and E_8 is

Cartan matrix of E_8

 \Rightarrow The ω_i must have components along the U blocks, components along " E_8 directions" determine gauge group

K3: Elliptic Fibration and F-Theory Limit

- For an elliptically fibred K3, require integral cycles B and F (base and fibre) with
 - intersection matrix $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$
 - $B \cdot \omega = F \cdot \omega = 0$
- \Rightarrow (B, F) spans a U block, and we can parametrise the Kähler form as

$$j = b B + f F + c^a u_a$$
 (where $u_a \cdot \omega = 0$)

- F-theory limit: Fibre volume shrinks to zero $\Rightarrow b \to 0$. K3 volume is $\nu \sim bf c^a c^a$, so we have to take $c^a \to 0$ as fast as \sqrt{b} (as intuitively expected)
- In the limit, j = f F is the Kähler form of the \mathbb{P}^1 base

K3: Elliptic Fibration and F-Theory Limit

- For an elliptically fibred K3, require integral cycles B and F (base and fibre) with
 - intersection matrix $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$
 - $B \cdot \omega = F \cdot \omega = 0$
- \Rightarrow (B, F) spans a U block, and we can parametrise the Kähler form as

$$j = b B + f F + c^a u_a$$
 (where $u_a \cdot \omega = 0$)

- F-theory limit: Fibre volume shrinks to zero $\Rightarrow b \to 0$. K3 volume is $\nu \sim bf c^ac^a$, so we have to take $c^a \to 0$ as fast as \sqrt{b} (as intuitively expected)
- In the limit, j = f F is the Kähler form of the \mathbb{P}^1 base

Cycles Between Branes

[Braun, Hebecker, Triendl]

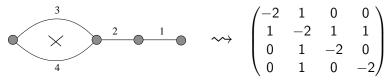
Brane 1

Brane 2

+1

- One leg in the base, one in the fibre torus
- Shrink to zero when the branes are moved on top of each other.
- They are topologically a sphere \leftrightarrow self-intersection -2.
- Cycles meeting at a brane intersect once, cycles encircling
 O planes (X) do not intersect

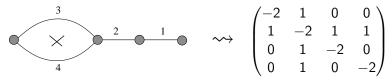
Intersection matrix of shrinking cycles determines gauge group: Consider e.g. T^2/\mathbb{Z}_2 orientifold: One O7, four D7s $\rightsquigarrow SO(8)$



In appropriate basis, complex structure of K3 is [Braun, Hebecker, Triendl]

$$\omega = \frac{\alpha}{2} + u e_2 + s \frac{\beta}{2} - \left(u s - \frac{z^2}{2} \right) e_1 + z_I \widehat{E}_I$$

Intersection matrix of shrinking cycles determines gauge group: Consider e.g. T^2/\mathbb{Z}_2 orientifold: One O7, four D7s $\rightsquigarrow SO(8)$

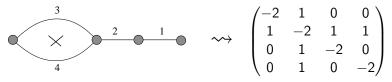


In appropriate basis, complex structure of K3 is [Braun, Hebecker, Triendl]

$$\omega = \frac{\alpha}{2} + u e_2 + s \frac{\beta}{2} - \left(u s - \frac{z^2}{2} \right) e_1 + z_I \widehat{E}_I$$

Explicit mapping between complex structure and brane positions!

Intersection matrix of shrinking cycles determines gauge group: Consider e.g. T^2/\mathbb{Z}_2 orientifold: One O7, four D7s $\rightsquigarrow SO(8)$

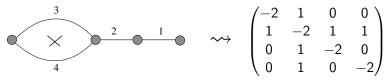


In appropriate basis, complex structure of K3 is [Braun, Hebecker, Triendl]

$$\omega = \frac{\alpha}{2} + \omega e_2 + \Im \left(u s - \frac{z^2}{2} \right) e_1 + \widehat{z_l} \widehat{E_l}$$
 base complex structure axiodilaton

brane positions, $z_I = 0$ is $SO(8)^4$ point

Intersection matrix of shrinking cycles determines gauge group: Consider e.g. T^2/\mathbb{Z}_2 orientifold: One O7, four D7s $\rightsquigarrow SO(8)$



In appropriate basis, complex structure of K3 is [Braun, Hebecker, Triendl]

$$\omega = \frac{\alpha}{2} + \omega e_2 + \Im \left(u s - \frac{z^2}{2} \right) e_1 + \widehat{z_l} \widehat{E_l}$$
 base complex structure axiodilaton

brane positions, $z_I = 0$ is $SO(8)^4$ point

Explicit mapping between complex structure and brane positions!

Flux Potential

- Type IIB: Three-form flux G_3 on the bulk, two-form gauge flux F_2 on the branes can stabilise geometric and brane moduli
- In M-theory, these are combined into four-form flux G_4 (brane moduli become four-form geometric moduli)
- Consistency conditions:
 - Flux quantisation: flux needs to be integral
 - Tadpole cancellation (without spacetime-filling M2 branes)

$$\frac{1}{2} \int_{K3 \times \widetilde{K3}} G_4 \wedge G_4 = \frac{\chi}{24} = 24$$

• G_4 needs to have exactly one leg on each on base and fibre for Lorentz invariance, hence two on each K3: $G = G^{I\Lambda}\eta_I \wedge \tilde{\eta}_{\Lambda}$, but no flux along B or F

Flux Potential

- Type IIB: Three-form flux G_3 on the bulk, two-form gauge flux F_2 on the branes can stabilise geometric and brane moduli
- In M-theory, these are combined into four-form flux G_4 (brane moduli become four-form geometric moduli)
- Consistency conditions:
 - Flux quantisation: flux needs to be integral
 - Tadpole cancellation (without spacetime-filling M2 branes)

$$\frac{1}{2} \int_{K3 \times \widetilde{K3}} G_4 \wedge G_4 = \frac{\chi}{24} = 24$$

• G_4 needs to have exactly one leg on each on base and fibre for Lorentz invariance, hence two on each K3: $G = G^{I\Lambda}\eta_I \wedge \tilde{\eta}_{\Lambda}$, but no flux along B or F

Potential

• Flux potential ($\mathcal V$ is the volume) :

[Haack,Louis]

$$V = \frac{1}{4\mathcal{V}^3} \left(\int_{K3 \times \widetilde{K3}} G \wedge *G - \frac{\chi}{12} \right)$$

- $K3 \times \widetilde{K3}$ is not a proper CY₄: Holonomy is $SU(2) \times SU(2)$
- G_4 induces map $G: H^2(K3) \to H^2(K3)$ and its adjoint G^a by

$$G ilde{\eta} = \int\limits_{\widetilde{\mathsf{K3}}} \mathsf{G} \wedge ilde{\eta} \qquad \qquad \mathsf{G}^{\mathsf{a}} \, \eta = \int\limits_{\mathsf{K3}} \mathsf{G} \wedge \eta$$

Potential is concisely expressed in terms of these maps

Potential

• Flux potential (${\cal V}$ is the volume) :

[Haack,Louis]

$$V = \frac{1}{4\mathcal{V}^3} \left(\int_{K3 \times \widetilde{K3}} G \wedge *G - \frac{\chi}{12} \right)$$

- $K3 \times \widetilde{K3}$ is not a proper CY_4 : Holonomy is $SU(2) \times SU(2)$
- G_4 induces map $G: H^2(K3) \to H^2(K3)$ and its adjoint G^a by

$$G\widetilde{\eta} = \int\limits_{\widetilde{K3}} G \wedge \widetilde{\eta} \qquad \qquad G^{\mathsf{a}} \, \eta = \int\limits_{K3} G \wedge \eta$$

Potential is concisely expressed in terms of these maps

$K3 \times K3$ Flux Potential

$$V = -\frac{1}{2(\nu \cdot \widetilde{\nu})^3} \left(\sum_j \|G \, \widetilde{\omega}_j\|_{\perp}^2 + \sum_i \|G^a \omega_i\|_{\widetilde{\perp}}^2 \right)$$

Here $\|\cdot\|_{\perp}^2$ is the norm orthogonal to the three-plane

- Positive definite potential
- Manifestly symmetric under SO(3)
- Minima at V = 0:

$$G \, \tilde{\omega}_j \in \langle \omega_1, \omega_2, \omega_3 \rangle \qquad G^a \omega_i \in \langle \tilde{\omega}_1, \tilde{\omega}_2, \tilde{\omega}_3 \rangle$$

ullet u and u are unfixed, flat directions (when V=0)

$K3 \times K3$ Flux Potential

$$V = -\frac{1}{2(\nu \cdot \widetilde{\nu})^3} \left(\sum_j \|G \, \widetilde{\omega}_j\|_{\perp}^2 + \sum_i \|G^a \omega_i\|_{\widetilde{\perp}}^2 \right)$$

Here $\left\|\cdot\right\|_{\perp}^{2}$ is the norm orthogonal to the three-plane

- Positive definite potential
- Manifestly symmetric under SO(3)
- Minima at V = 0:

$$G \, \tilde{\omega}_j \in \langle \omega_1, \omega_2, \omega_3 \rangle \qquad G^a \omega_i \in \langle \tilde{\omega}_1, \tilde{\omega}_2, \tilde{\omega}_3 \rangle$$

ullet u and $\widetilde{
u}$ are unfixed, flat directions (when V=0)

Minima: Existence, Flat Directions

- Minkowski minima do not necessarily exist: G^aG must be diagonalisable and positive semi-definite (not guaranteed although G^aG is self-adjoint, since metric is indefinite!)
- Flat directions generally exist and are desired: M-theory moduli become part of 4D vector fields in F-theory limit → fixing these moduli breaks the gauge group (rank-reducing)
- Flux also induces explicit mass term for three-dimensional vectors
- Vacua can preserve $\mathcal{N}=4$, $\mathcal{N}=2$ or $\mathcal{N}=0$ supersymmetry in four dimensions, depending on the action of G on the three-plane

Stabilisation Strategy

- F-theory limit fixes Kähler form (up to base volume), j = f F
- Holomorphic two-form determines shrinking cycles, i.e. gauge enhancement
- To stabilise a desired brane configuration:
 - Identify set of shrinking cycles to obtain desired brane stacks
 - Chose these as part of a basis of H² (K3) and complete by integral cycles
 - Find an integral block-diagonal flux that satisfies tadpole cancellation condition (strong constraint and computationally costly)

Stabilisation Strategy

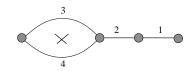
- F-theory limit fixes Kähler form (up to base volume), j = f F
- Holomorphic two-form determines shrinking cycles, i.e. gauge enhancement
- To stabilise a desired brane configuration:
 - Identify set of shrinking cycles to obtain desired brane stacks
 - Chose these as part of a basis of H² (K3) and complete by integral cycles
 - Find an integral block-diagonal flux that satisfies tadpole cancellation condition (strong constraint and computationally costly)

Examples

We give explicit examples of

- The T^2/\mathbb{Z}_2 orientifold with $SO(8)^4$: Four stacks of four D7 branes and one O7 plane each
- Moving one brane off a stack.

 →SO(8)³ × SO(6) × U(1) or SO(8)³ × SO(6)
- Moving two branes $\rightsquigarrow SO(8)^3 \times SO(4) \times SU(2)$

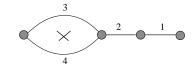


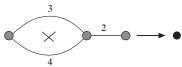
Examples

We give explicit examples of

- The T^2/\mathbb{Z}_2 orientifold with $SO(8)^4$: Four stacks of four D7 branes and one O7 plane each
- Moving one brane off a stack. $\rightsquigarrow SO(8)^3 \times SO(6) \times U(1)$ or $SO(8)^3 \times SO(6)$
- Moving two branes

 → SO(8)³ × SO(4) × SU(2)



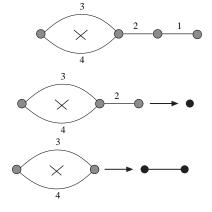


Examples

We give explicit examples of

- The T^2/\mathbb{Z}_2 orientifold with $SO(8)^4$: Four stacks of four D7 branes and one O7 plane each
- Moving one brane off a stack. $\rightsquigarrow SO(8)^3 \times SO(6) \times U(1)$ or $SO(8)^3 \times SO(6)$
- Moving two branes

 → SO(8)³ × SO(4) × SU(2)



Conclusion

- We have a nice geometric picture of D7 brane motion
- We found the flux potential in M-theory and explicit conditions for the existence of minima and gauge symmetry breaking
- Translation to F-theory ⇒ recipe to find fluxes that stabilise a desired situation
- Explicit examples: We can move any brane
- Open problem: Numerical scan of matrices is very time—consuming
- Outlook: Generalise to elliptically fibred four-folds to get physically more realistic models, in particular intersecting branes

Conclusion

- We have a nice geometric picture of D7 brane motion
- We found the flux potential in M-theory and explicit conditions for the existence of minima and gauge symmetry breaking
- Translation to F-theory ⇒ recipe to find fluxes that stabilise a desired situation
- Explicit examples: We can move any brane
- Open problem: Numerical scan of matrices is very time-consuming
- Outlook: Generalise to elliptically fibred four-folds to get physically more realistic models, in particular intersecting branes