The Potential Fate of Local Model Building

Christoph Lüdeling bctp and PI, University of Bonn

String Pheno 2011 Madison, August 23, 2011

CL, Hans Peter Nilles, Claudia Christine Stephan Phys. Rev. **D83** [arXiv:1101.3346]

C. Lüdeling (bctp & PI, Bonn University) The Potential Fate of Local Model Building

String Pheno 2011 1 / 15

- F-Theory Model Building: Generalisation of type IIB intersecting branes
- Usually, consider local models: Focus on brane stack or points within the stack and decouple bulk of the compactification manifold
- Advantage: Simple, physics basically fixed by symmetry
- Obvious question: Existence of global completion

- F-Theory Model Building: Generalisation of type IIB intersecting branes
- Usually, consider local models: Focus on brane stack or points within the stack and decouple bulk of the compactification manifold
- Advantage: Simple, physics basically fixed by symmetry
- Obvious question: Existence of global completion
- GUT models need to address proton stability
- Dimension-four proton decay: Forbidden by matter parity or variants - should be defined locally
- Dimension-five proton decay: Use zero mode assignment, i.e. additional U(1) symmetries present in the setup

< A →

1 Local Models, Operators and Matter Parity

- 2 The Good, the Bad, the Parity
- **3** Matter Parity in Local Models
- 4 Semilocal Embedding

< A →

[Beasley, Heckman, Vafa; Donagi, Wijnholt; Marsano, Saulina, Schäfer-Nameki; Hayashi, Kawano, Tatar, Watari; Dudas, Palti; Choi, ...]

For F-Theory models, different degrees of locality:

Global model: Specify full compactification space (CY fourfold) – complete, consistent

[Blumenhagen, Grimm, Jurke, Weigand; Grimm, Krause, Weigand; Knapp, Kreuzer, Mayrhofer, Walliser; Collinucci, Savelli; Braun, Hebecker, CL, Valandro,...]

- Semilocal model: Focus on the GUT surface (brane stack) and matter curves within S decouples bulk of compactification space
- Local model: Consider only points where matter curves intersect and interactions are localised – simple, hope for predictivity because of local constraints. Certain question cannot be answered, existence of global completion is not guaranteed.

< 47 →

- "Brane" picture: SU(5) gauge theory on 7-branes (8D), matter and interactions localised on intersections: curves and points of higher symmetry, potentially up to E_8
- Focus on GUT surface \rightsquigarrow 8D E_8 GUT, broken to SU(5) by adjoint Higgs
- Actually, rank-preserving breaking

$$E_8 \longrightarrow (SU(5) \times SU(5)_{\perp}) \longrightarrow SU(5) \times U(1)^4$$

 Extra U(1)'s generically massive – but remain as global selection rules [Grimm, Weigand]

< 47 →

Higgs in $SU(5)_{\perp}$

Higgs field takes values in $SU(5)_{\perp}$ – matter curves now visible as vanishing loci of Higgs eigenvalues:

Higgs
$$\Phi \sim \begin{pmatrix} t_1 & & & \\ & t_2 & & \\ & & t_3 & \\ & & & t_4 & \\ & & & & t_5 \end{pmatrix}, \qquad \sum_i t_i = 0$$

Matter curves:

10:
$$t_i = 0$$
, **5**: $-(t_i + t_j) = 0$, $i \neq j$

 t_i double as charges under the extra U(1)s: for allowed couplings, t_i sum up to zero.

Monodromies can identify some t_i : At least \mathbb{Z}_2 required for tree-level top quark Yukawa coupling $\mathbf{10}_{top}\mathbf{10}_{top}\mathbf{5}_{H_u}$

Superpotential Couplings

$$W_{\text{good}} = \mu \mathbf{5}_{H_u} \mathbf{5}_{H_d} + Y_u \mathbf{5}_{H_u} \mathbf{10}_M \mathbf{10}_M + Y_d \mathbf{5}_{H_d} \mathbf{5}_M \mathbf{10}_M$$

$$\begin{aligned} \mathcal{W}_{\mathsf{bad}} &= \beta \mathbf{5}_{H_u} \mathbf{\overline{5}}_M + \lambda \mathbf{\overline{5}}_M \mathbf{\overline{5}}_M \mathbf{10}_M & \mathsf{dim-3/4} \\ &+ W^1 \mathbf{10}_M \mathbf{10}_M \mathbf{10}_M \mathbf{\overline{5}}_M + W^2 \mathbf{10}_M \mathbf{10}_M \mathbf{10}_M \mathbf{\overline{5}}_{H_d} \\ &+ W^3 \mathbf{\overline{5}}_M \mathbf{\overline{5}}_M \mathbf{5}_{H_u} \mathbf{5}_{H_u} + W^4 \mathbf{\overline{5}}_M \mathbf{\overline{5}}_{H_d} \mathbf{5}_{H_u} \mathbf{5}_{H_u} & \mathbf{\mathbf{5}}_{H_u} \end{aligned} \right\} \mathsf{dim-5}$$

< 67 ▶

Superpotential Couplings

$$W_{good} = \mu \mathbf{5}_{H_u} \mathbf{\overline{5}}_{H_d} + Y_u \mathbf{5}_{H_u} \mathbf{10}_M \mathbf{10}_M + Y_d \mathbf{\overline{5}}_{H_d} \mathbf{\overline{5}}_M \mathbf{10}_M$$

$$W_{bad} = \beta \mathbf{5}_{H_u} \mathbf{\overline{5}}_M + \lambda \mathbf{\overline{5}}_M \mathbf{\overline{5}}_M \mathbf{10}_M$$

$$+ W^1 \mathbf{10}_M \mathbf{10}_M \mathbf{10}_M \mathbf{\overline{5}}_M + W^2 \mathbf{10}_M \mathbf{10}_M \mathbf{\overline{5}}_{H_d}$$

$$+ W^3 \mathbf{\overline{5}}_M \mathbf{\overline{5}}_M \mathbf{5}_{H_u} \mathbf{5}_{H_u} + W^4 \mathbf{\overline{5}}_M \mathbf{\overline{5}}_{H_d} \mathbf{5}_{H_u} \mathbf{5}_{H_u}$$

$$dim-3/4$$

$$dim-3/4$$

$$dim-5$$

$$\begin{array}{c|c|c|c|c|c|c|}\hline & \mathbf{5}_{H_u}, \mathbf{\bar{5}}_{H_d} & \mathbf{10}_M, \mathbf{\bar{5}}_M \\ \hline & P_M & +1 & -1 \\ \hline \end{array}$$

String Pheno 2011 7 / 15

Superpotential Couplings

$$W_{\text{good}} = \mu \mathbf{5}_{H_u} \mathbf{\overline{5}}_{H_d} + Y_u \mathbf{5}_{H_u} \mathbf{10}_M \mathbf{10}_M + Y_d \mathbf{\overline{5}}_{H_d} \mathbf{\overline{5}}_M \mathbf{10}_M$$

$$W_{\text{bad}} = \beta \mathbf{5}_{H_u} \mathbf{5}_M + \lambda \mathbf{5}_M \mathbf{5}_M \mathbf{10}_M \qquad \text{dim-3/4} \\ + W^1 \mathbf{10}_M \mathbf{10}_M \mathbf{10}_M \mathbf{5}_M + W^2 \mathbf{10}_M \mathbf{10}_M \mathbf{5}_{H_d} \\ + W^3 \mathbf{5}_M \mathbf{5}_M \mathbf{5}_{H_u} \mathbf{5}_{H_u} + W^4 \mathbf{5}_M \mathbf{5}_{H_d} \mathbf{5}_{H_u} \mathbf{5}_{H_u} \qquad \text{dim-5}$$

Weinberg operator W^3 and $W^1 \supset QQQL$, $\bar{u}\bar{u}\bar{d}\bar{e}$ still allowed.

For the local model we require

- P_M defined locally
- heavy top quark (i.e. rank-one up-type Yukawa matrix at tree level down-type Yukawas can be rank-zero or rank-one)
- No dim-5 proton decay (the W^1 operator forbidden at all orders)
- Masses for all quarks and leptons after switching on VEVs

For the local model we require

- P_M defined locally
- heavy top quark (i.e. rank-one up-type Yukawa matrix at tree level down-type Yukawas can be rank-zero or rank-one)
- No dim-5 proton decay (the W^1 operator forbidden at all orders)
- Masses for all quarks and leptons after switching on VEVs

Local model building freedom: Freely choose

- Monodromy (at least \mathbb{Z}_2 for heavy top)
- Assignment of matter and Higgs zero modes to curves
- Singlet VEVs (for matter parity even singlets)

Define \mathbb{Z}_2 matter parity in terms of the t_i (i.e. as subgroup of $SU(5)_{\perp}$):

$$P_M = (-1)^{c_i t_i}$$
, $c_i = 0, 1$ (defined mod 2)

- Monodromy $t_1 \leftrightarrow t_2$ requires $c_1 = c_2 = 1$
- Down-type masses require even number of $c_i = 1$

Hence, two choices of matter parity:

Case I:
$$P_M = (-1)^{t_1+t_2+t_3+t_4}$$

Case II: $P_M = (-1)^{t_1+t_2}$

String Pheno 2011 9 / 15

< 47 →

Matter 10 Curves				
10 ₁	t _{1,2}	_	top	
10 ₂	t_3	_		
10 ₃	t_4	_		
	Matter 5	Curves		
5 3	$-t_{1,2}-t_5$	_		
5 5	$-t_3 - t_5$	_		
5 6	$-t_4 - t_5$	_		
Even Singlet Curves				
1_1	$\pm(t_{1,2}-t_3)$	+		
1_2	$\pm (t_{1,2} - t_4)$	+		
1_4	$\pm(t_3-t_4)$	+		
1_7	$t_1 - t_2$	+		

String Pheno 2011 10 / 15

 </

	Matter 10	Curve	es
10 ₁	t _{1,2}	_	top
10 ₂	t ₃	_	
10 ₃	t_4	_	
	Matter 5	Curve	S
5 3	$-t_{1,2}-t_5$	_	
5 5	$-t_3 - t_5$	—	
5 6	$-t_4 - t_5$	_	
	Even Single	t Curv	/es
1_1	$\pm(t_{1,2}-t_3)$	+	
1_2	$\pm (t_{1,2} - t_4)$	+	
1_4	$\pm(t_3-t_4)$	+	
1_7	$t_1 - t_2$	+	

- *W*¹ without singlets:
 - $\begin{array}{l} 10_110_110_2 \overline{5}_6 \ ,\\ 10_110_110_3 \overline{5}_5 \ ,\\ 10_110_210_3 \overline{5}_3 \end{array}$

Matter 10 Curves					
10 ₁	t _{1,2}	_	top		
10 ₂	t_3	_	no matter		
10 ₃	t_4	_	matter		
	Matter 5	Curve	es		
5 3	$-t_{1,2}-t_5$	_	matter		
5 5	$-t_{3}-t_{5}$	—	no matter		
5 6	$-t_4 - t_5$	_	matter		
	Even Singlet Curves				
1_1	$\pm(t_{1,2}-t_3)$	+			
1_2	$\pm(t_{1,2}-t_4)$	+			
1_4	$\pm(t_3-t_4)$	+			
1_7	$t_1 - t_2$	+			

- *W*¹ without singlets:
 - $\begin{array}{c} 10_110_110_2 \overline{5}_6 \ ,\\ 10_110_110_3 \overline{5}_5 \ ,\\ 10_110_210_3 \overline{5}_3 \end{array}$
 - \rightsquigarrow no matter on $10_2,\ 5_5$

Matter 10 Curves				
10 ₁	t _{1,2}	_	top	
10 ₂	t_3	_	no matter	
10 ₃	t_4	_	matter	
	Matter 5	Curve	es	
5 3	$-t_{1,2}-t_5$	_	matter	
5 5	$-t_3 - t_5$	—	no matter	
5 6	$-t_4 - t_5$	_	matter	
	Even Singlet Curves			
1_1	$\pm(t_{1,2}-t_3)$	+		
1_2	$\pm (t_{1,2} - t_4)$	+		
1_4	$\pm(t_3-t_4)$	+		
1_7	$t_1 - t_2$	+		

- W^1 without singlets: $10_110_110_2\overline{5}_6$, $10_110_110_3\overline{5}_5$, $10_110_210_3\overline{5}_3$
 - \rightsquigarrow no matter on $10_2,\ 5_5$

				 W¹ without singlets:
	Matter $f 10$	Curv	/es	-
10 ₁	t _{1,2}	_	top	$10_110_110_25_6$,
10 ₂	t_3	_	no matter	$10_1 10_1 10_3 \overline{5}_5$,
10 ₃	t_4	—	matter	$10_1 10_2 10_3 \overline{5}_3$
	Matter 5	Curv	es	1 2 5 5
5 3	$-t_{1,2}-t_5$	_	matter	\rightsquigarrow no matter on $oldsymbol{10}_2$, $oldsymbol{5}_5$
5 5	$-t_{3}-t_{5}$	_	no matter	 <i>W</i>¹ with singlets:
5 6	$-t_{4}-t_{5}$	—	matter	e.g. $10_1 10_1 10_3 \overline{5}_6 1_4$,
	Even Single	t Cui	rves	
1_1	$\pm(t_{1,2}-t_3)$	+	no VEV	$10_1 10_1 10_3 \overline{5}_3 1_1$
1_2	$\pm(t_{1,2}-t_4)$	+	VEV	
1_4	$\pm(t_3-t_4)$	+	no VEV	\rightsquigarrow no VEVs for 1_1 , 1_4
1_7	$t_1 - t_2$	+	VEV	

String Pheno 2011 10 / 15

< 67 ▶

Matter 10 Curves				
10 ₁	t _{1,2}	_	top	
10 ₂	t_3	_	no matter	
10 ₃	t_4	_	matter	
	Matter 5	Curve	es	
5 3	$-t_{1,2}-t_5$	_	matter	
5 5	$-t_{3}-t_{5}$	_	no matter	
5 6	$-t_4 - t_5$	matter		
Even Singlet Curves				
1 ₁	$\pm(t_{1,2}-t_3)$	+	no VEV	
1_2	$\pm(t_{1,2}-t_4)$	+	VEV	
1_4	$\pm(t_3-t_4)$	+	no VEV	
1_7	$t_1 - t_2$	+	VEV	

- W^1 without singlets: $10_110_110_2\overline{5}_6$, $10_110_110_3\overline{5}_5$, $10_110_210_3\overline{5}_3$
 - \rightsquigarrow no matter on $10_2,\,5_5$

e.g. $10_110_110_3\overline{5}_61_4$, $10_110_110_3\overline{5}_31_1$

 \rightsquigarrow no VEVs for $\boldsymbol{1}_1,~\boldsymbol{1}_4$

• W¹ will not be generated at any order: lack of t₃ factor

Higgs-like 5 Curves		Down-type Yukawas
$\overline{5}_{H_u}$	$-t_1 - t_2$	
$\overline{5}_1$	$-t_{1,2}-t_3$	
5 ₂	$-t_{1,2}-t_4$	
$\overline{5}_4$	$-t_{3}-t_{4}$	

< 67 ▶

Higgs-like 5 Curves		Down-type Yukawas
5 _{Hu}	$-t_{1}-t_{2}$	No masses at tree level or with singlets
$\overline{5}_1$	$-t_{1,2}-t_3$	
5 ₂	$-t_{1,2} - t_4$	No masses at tree level or with singlets
$\overline{5}_4$	$-t_{3}-t_{4}$	

• Down-type Higgs needs a factor of t₃ to allow for Yukawa couplings (at any order)

Higgs-like 5 Curves		Down-type Yukawas
5 _{Hu}	$-t_{1}-t_{2}$	No masses at tree level or with singlets
5 ₁	$-t_{1,2}-t_3$	either rank-two Yukawa matrix, or no up-type masses with singlets
5 ₂	$-t_{1,2} - t_4$	No masses at tree level or with singlets
$\overline{5}_4$	$-t_{3}-t_{4}$	

- Down-type Higgs needs a factor of t₃ to allow for Yukawa couplings (at any order)
- Down-type Yukawa should not be rank-two

String Pheno 2011 11 / 15

< A →

Higgs-like 5 Curves		Down-type Yukawas
5, 4	$-t_1 - t_2$	No masses at tree level or with singlets
$\overline{5}_{H_u}$ 2 $-t_1-t_2$		P*
Ē. / t. t.	$-t_1 \circ - t_2$	either rank-two Yukawa matrix, or no up-type masses with singlets
$J_1 = -\iota_{1,2} - \iota_3$		masses with singlets
5 ₂	$-t_{1,2} - t_4$	No masses at tree level or with singlets
$\overline{5}_4$	$-t_{3}-t_{4}$	

- Down-type Higgs needs a factor of t₃ to allow for Yukawa couplings (at any order)
- Down-type Yukawa should not be rank-two
- String-scale μ term for both Higgses on one curve

Higgs-like 5 Curves		Down-type Yukawas	
<u>5</u> ., L	$-t_1 - t_2$	No masses at tree level or with singlets	
$\overline{5}_{H_u} \not = -t_1 - t_2$			
Ē / 4 4	either rank-two Yukawa matrix, or no up-type masses with singlets		
$J_1 = -l_{1,2} - l_3$		masses with singlets	
5 ₂	$\frac{f}{f}$ $-t_{1,2}-t_4$ No masses at tree level or with singlets		
5 ₄	$-t_3 - t_4$	Rank-one Yukawa matrix, bottom quark heavy	

- Down-type Higgs needs a factor of t₃ to allow for Yukawa couplings (at any order)
- Down-type Yukawa should not be rank-two
- String-scale μ term for both Higgses on one curve
- $\overline{\bf 5}_4 = \overline{\bf 5}_{H_d}$ is unique choice, tree-level coupling $\overline{\bf 5}_{H_d} {\bf 10}_{top} \overline{\bf 5}_3$

Case I: Yukawas and CKM

- Third generation: 10_1 and $\overline{5}_3, \text{light generations:}\ 10_3$ and $\overline{5}_6$
- Higgses: $\overline{\mathbf{5}}_{H_u}$ and $\overline{\mathbf{5}}_4$, only $\langle \mathbf{1}_2 \rangle \sim \epsilon$ required at first order
- Ignore $\langle {f 1}_7
 angle$, ${\cal O}(1)$ coefficients and nontrivial splits
- Yukawa matrices (schematically):

$$Y^{u} \sim Y^{d} \sim \begin{pmatrix} \epsilon^{2} & \epsilon^{2} & \epsilon \\ \epsilon^{2} & \epsilon^{2} & \epsilon \\ \epsilon & \epsilon & 1 \end{pmatrix}$$

• CKM matrix:

$$V_{\mathsf{CKM}} \sim egin{pmatrix} 1 & 1 & \epsilon \ 1 & 1 & \epsilon \ \epsilon & \epsilon & 1 \end{pmatrix}$$

- Masses and mixings possible (though not a great fit)
- Degeneracy because three generations come from two curves

[Friedman, Morgan, Witten; Donagi, Wijnholt]

Now *semilocal* picture: Consider GUT surface using spectral cover approach

Main aim: Find homology classes of matter curves which allow to find the flux restrictions and thus the zero mode spectrum.

Two types of fluxes (actually, G four-form flux):

- U(1) ⊂ SU(5)_⊥ fluxes on matter curves (from the transverse branes): Determines (chiral) 4D zero modes for full GUT multiplets (by index theorem). These are still free parameters up to anomaly cancellation requirements.
- Hypercharge flux on S (globally trivial so hypercharge stays unbroken): Restrictions to matter curves splits SU(5) multiplets; homological relations between matter curves lead to relations between the splittings.

√ □ → 13 / 15

Case I: Doublet-Triplet Splitting fails

• Higgs sector:

- We can pairwise decouple unwanted triplets from $\mathbf{5}_{H_u}$ and $\mathbf{5}_2$, and from $\mathbf{5}_1$ and $\mathbf{5}_4$ by coupling to VEV for $\mathbf{1}_2$
- However:

#(doublets from $\mathbf{5}_{H_u}, \mathbf{5}_2) = \#$ (triplets from $\mathbf{5}_{H_u}, \mathbf{5}_2$)

- · Problem persists even when allowing exotics from the matter sector
- Separately, down-type Higgs on $\mathbf{5}_4$ cannot be realised
- Matter sector can be engineered easily
- Similar result for case II

String Pheno 2011

Conclusions

- Analysed F-Theory GUT in local and semilocal approach
- Goal: Use locally defined matter parity and additional U(1)s to ensure proton stability

Conclusions

- Analysed F-Theory GUT in local and semilocal approach
- Goal: Use locally defined matter parity and additional U(1)s to ensure proton stability
- Local model is very constrained: Two cases only
- Neither case can be embedded in semilocal framework (using spectral cover) first step towards global realisation fails
- Problem is doublet-triplet splitting in the Higgs sector, even when allowing for exotic matter
- Predictivity of local point in question Crucial model features required to have nonlocal origin?

Conclusions

- Analysed F-Theory GUT in local and semilocal approach
- Goal: Use locally defined matter parity and additional U(1)s to ensure proton stability
- Local model is very constrained: Two cases only
- Neither case can be embedded in semilocal framework (using spectral cover) first step towards global realisation fails
- Problem is doublet-triplet splitting in the Higgs sector, even when allowing for exotic matter
- Predictivity of local point in question Crucial model features required to have nonlocal origin?
- Possible loopholes: Matter representations might be more subtle than simple group theory intuition suggests

[Ceccotti, Heckman, Vafa; Donagi Wijnholt] [Esole, Yau; Marsano, Schäfer-Nameki]

< A →