Local SU(5) Unification from the Heterotic String

Christoph Lüdeling ITP, Universität Heidelberg

W. Buchmüller, CL, J. Schmidt, arXiv:0707.1651

- Introduction
- 2 The Model
- 3 Anomaly Cancellation
- 4 Local GUT
- Outlook

Introduction

- GUT: Attractive features:
 - $SU(3)\times SU(2)\times U(1)\subset SU(5), SO_{10}\ldots$, gauge couplings unify
 - Unification matter into larger multiplets
- Drawbacks in 4d GUTS
 - Large Higgs representations required
 - Doublet-triplet-splitting
 - Yukawa couplings do not unify
- Drawbacks can be addressed in higher-dimensional orbifold GUTs
- Nice possibility: Heterotic String:
 - $E_8 \times E_8$ gauge symmetry included
 - Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
 - UV completion

[Kobayashi, Raby, Zhang; Buchmüller, Hamaguchi, Lebedev, Ratz; Kim, Kim, Kyae; Förste, Nilles, Vaudrevange, Wingerter, Ramos-Sanchez,...]

Heterotic Orbifold Compactification

- Choose a torus with discrete isometry ("twist") with fixed points
- Mod out by this isometry, fixed points become singularities
- Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines
- Gauge symmetry reduced at fixed points (but rank usually preserved)
- Twisted sectors: States localised at fixed points

The Model: Geometry

[Buchmüller, Hamaguchi, Lebedev, Ratz]

• Torus: $G_2 \times SU(3) \times SO(4)$ root lattice, $\mathbb{Z}_{6-II} = \mathbb{Z}_3 \times \mathbb{Z}_2$ twist: [Kobayashi,Raby,Zhang]

- Obtain effective 6D Theory on T^2/\mathbb{Z}_2 orbifold
- Internal zero modes and \mathbb{Z}_3 twisted states show up as bulk states, \mathbb{Z}_2 twisted states are localised at orbifold fixed points

The Model: Effective T^2/\mathbb{Z}_2 Orbifold

Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green–Schwarz mechanism requires factorisation of anomaly polynomials, $I_8 = X_4 Y_4$ and $I_6^f = X_4^f Y_2$
- $\mathcal{O}(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
- Anomalous U(1)'s induce localised FI terms

$$\xi_0 = 148 \left(\frac{gM_{\rm P}^2}{384\pi^2} \right) \delta^{(2)}(z-z_0)$$
 $\xi_1 = 80 \left(\frac{gM_{\rm P}^2}{384\pi^2} \right) \delta^{(2)}(z-z_1)$

• These lead to localisation of bulk fields, break the U(1) and need to be cancelled to obtain SUSY vacuum [Lee, Nilles, Zucker]

Local SU(5) GUT

 Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

in our case:
$$SU(6) \longrightarrow \left\{ \begin{array}{c} SU(5) \\ SU(2) \times SU(4) \end{array} \right.$$

- In zero mode spectrum, only the intersection of local groups survives, which is $G_{SM} = SU(3) \times SU(2) \times U(1)$
- Localised fields come in complete multiplets of local GUT group
- Due to other branes, bulk fields form split multiplets
- Due to higher symmetry, decoupling of exotics much more transparent that in four-dimensional limit

Projection

- ullet On branes, SUSY is broken to $\mathcal{N}=1$
- Bulk Matter: Hypermultiplets, split as H = (H_L, H_R) into chiral multiplet
- Bulk vector multiplets split as V = (A, φ) into vector and chiral multiplets
- Only one $\mathcal{N}=1$ multiplet survives projection

Decoupling

- Several pairs of $\mathbf{5} + \bar{\mathbf{5}}$ and most exotics decoupled easily
- Remaining **5**'s and **5**'s:

Bulk:	5	5 ₁	5 ^c ₀	5	5 ₁	5 ₂	5 ^c ₀	5 ^c ₂
Zero modes:								
$SU(3) \times SU(2)$	(1, 2)	(1, 2)	(3,1)	(1, 2)	(1, 2)	$(\bar{3},1)$	$(\bar{3},1)$	(1, 2)
$U(1)_{B-L}$	0	0	$-\frac{2}{3}$	0	0	$-\frac{1}{3}$	<u>2</u> 3	-1
MSSM content	Hu				H_d	d ₃		l ₃

 $2\times\left(\bar{\bf 5}+{\bf 10}\right)$ generations on the branes $2\times\left(\bar{\bf 5}+{\bf 10}\right) \text{ generations in the bulk}$ ${\bf 5}+\bar{\bf 5} \text{ Higgses in the bulk}$

Split Multiplets

• Bulk generations:

$$egin{aligned} ar{f 5}_{(3)} &= igl(ar{f 3}, f 1igr) + igl(f 1, f 2igr) & {f 10}_{(3)} &= igl(ar{f 3}, f 1igr) + igl(ar{f 3}, f 1igr) + igl(f 1, f 1igr) & {f 10}_{(4)} &= igl(f 3, f 2igr) + igl(ar{f 3}, f 1igr) + igl(f 1, f 1igr) & {f 10}_{(4)} &= igl(f 3, f 2igr) + igl(f 3, f 1igr) + igl(f 1, f 1igr) & {f 10}_{(4)} &= {f$$

One generation remains, avoiding SU(5) mass relations

• Higgses:

$$egin{aligned} oldsymbol{5}_u &= oldsymbol{(3.1)} + oldsymbol{(1,2)} \ oldsymbol{ar{5}}_d &= oldsymbol{(3.1)} + oldsymbol{(1,2)} \end{aligned}$$

Orbifold projection solves doublet-triplet-splitting

Yukawa Couplings

$$W = C_{(ij)}^{(u)} \mathbf{5}_{u} \mathbf{10}_{(i)} \mathbf{10}_{(j)} + C_{(ij)}^{(d)} \mathbf{5}_{d} \bar{\mathbf{5}}_{(i)} \mathbf{10}_{(j)}$$

$$C_{(ij)}^{(u)} = \begin{pmatrix} a_1 & 0 & a_2 & a_3 \\ 0 & a_1 & a_2 & a_3 \\ a_2 & a_2 & 0 & \mathbf{g} \\ a_3 & a_3 & \mathbf{g} & a_4 \end{pmatrix}, \qquad C_{ij}^{(d)} = \begin{pmatrix} 0 & 0 & b_1 & b_2 \\ 0 & 0 & b_1 & b_2 \\ b_3 & b_3 & b_4 & 0 \\ b_5 & b_5 & b_6 & b_5^2 \end{pmatrix}$$

$$W = Y^u_{ij} h_u u^c_i q_j + Y^d_{ij} h_d d^c_i q_j + Y^I_{ij} h_d l_i e^c_j$$

$$Y^{\textit{u}}_{ij} = \begin{pmatrix} a_1 & 0 & a_3 \\ 0 & a_1 & a_3 \\ a_2 & a_2 & \textit{g} \end{pmatrix}, \quad \ \ \, \begin{array}{c} \textbf{Y}^{\textit{d}}_{ij} = \begin{pmatrix} 0 & 0 & b_2 \\ 0 & 0 & b_2 \\ b_5 & b_5 & b_7 \end{pmatrix}, \quad \ \, \textbf{Y}^{\textit{I}}_{ij} = \begin{pmatrix} 0 & 0 & b_1 \\ 0 & 0 & b_1 \\ b_3 & b_3 & b_4 \end{pmatrix}$$

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in 6D → simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional *D*-term vanishes
- Open Questions:
 - Phenomenology needs to be improved (CKM mixing, *R*-parity)
 - Stabilisation of moduli, in particular, size of two-dimensional torus
 - Profiles of bulk fields due to localised FI terms
 - Blowup/resolution of singularities, generalisation to K3 internal space