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Approaches in Eg x Eg heterotic string theory:

@ Orbifold model bwldmg [Blaszczyk, Buchmiiller, Groot Nibbelink,
Hamaguchi, Kim, Kyae, Lebedev, Nilles, Raby, Ramos—Sanchez, Ratz, FR,
Trapletti, Vaudrevange, Wingerter, .. .]

@ Calabi—-Yau model bmldlng [Anderson, Bouchard, Braun, Donagi, Gray,
He, Lukas, Ovrut, Palti, Pantev, Waldram, ...]

@ Free fermionic constructions [Faraggi, Nanopoulos, Yuan, ...]

) Gepner Models [Dijkstra, Gato—Rivera, Huiszoon, Schellekens, .. .]
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. Orbifold
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exact CFT calculations possible

Anomaly drives model
from Orbifold point

away

smooth, generic
complicated
only SUGRA approximation

Phenomenology (torsion) drives
model away from CY space
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Evidence for purely stringy constraints that are only seen in
exact CFT caluclation on the orbifold and NOT on CY
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Problem 2

Need a framework capable of describing both departure from the
orbifold and torsion

Suggestion
Use Gauged Linear Sigma Models
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Gauged Linear Sigma Models Definition
Anomalies

Definition of GLSM

Consider 2D SUSY with Abelian gauge groups and field content:

superfield . charge | bosonic DOF | fermionic DOF
type notation

chiral e (q1)? z? P2
chiral-Fermi A (Q))~ he A
gauge (V,A) 0 al,al ¢!
Fermi—gauge ol 0 s’ o'
chiral Ol (g)™ xm Pm
chiral-Fermi rH (Q)" - yH

Geometry given by D—terms and F-terms J

Gauge group given by monad bundle |




Gauged Linear Sigma Models Definition

Anomalies

Anomalies

Aui=q-q—Q-Qy,
qr-qy = Z(q/)a(%)a + Z(q/)m(%)m,
Q- Q= Z(QI)Q(QJ)Q + Z(QI)H(QJ)“-

«

Problem

In general many U(1) gauge groups
= Huge amount of stringent anomaly conditions.
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Anomalies

+ VWV

Ay=q-q—Q - Qs+ 7y,
qr-qy = Z(QI (q)° + Z a)™(q)™,
Q- Q= Z(QI)Q(QJ + Z(Ql
a 1

Introduce new fields to obtain Green—Schwarz mechanism on
the world—sheet to cancel gauge anomalies. [Adams Ernebjerg,Lapan]




Gauged Linear Sigma Models

Definition
Anomalies

Green—Schwarz mechanism

Green—Schwarz mechanism needs fields that transform with shifts.
Our approach
= Use logarithm of coordinate fields W

WF| = [[)(I) + TXI In ‘RX(\U)’} FI = 77_] = r,X TXI

Ay=q-q9— Q- Qs+ 7y,

with
o constant Fl parameter
o R*(W): homogeneous polynomials w/ charges rj*

o Tx: (quantized) coefficients: TX,ff’ c7Z
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Gauged Linear Sigma Models Definition

Anomalies

Consequences

H=dB+ w. —wym
Int. Bl's: 0:/dH:/trR2—trf2+N55

Anomalies: 0= Ay =[q/q]— Q Q)] —[QI"QY — q/"q]]+ ZI,{/

C trR2 CtrF2 C NS5

Relationship orbifold < CY
Bls on CY < Modular invariance on orbifold.

NS5 and anti—NS5 branes, torsion

@ trR? < trF2 = NS5 and torsion
@ trR?2 > trF2 =  anti-NS5 and torsion
o [trR?] =[trF?] = torison
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Example

Green—Schwarz mechanism

Green Schwarz mechanism needs fields that transform with shifts.
Our approach
= Use logarithm of coordinate fields W

Wg = {/)(l) + Txy |n[RX(\U)]} Fl = Ty = r,X Txi

Ay=q-q—Q-Q,+7y

with
o constant Fl parameter
o R*(W): homogeneous polynomials w/ charges rj*

o Tx: (quantized) coefficients: TX,ff’ c7Z
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1.) No anomalies

#1

2
NE

2
|21l

8
£>0 = =0, Vp=0= Y |272=¢
a=1

Geometry compact, no anomalies. J
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Example

2.) T > 0, compact geometry, effective curve

superfield wa:l ..... 8 rp:l ..... 4 Aa:l ..... 4 ¢m:1,2
lowest component z? A A x™m
gauge charge 1 -2 1 -2

P7[2,2,2,2] with SU(2) bundle

1
A == [af — Qf — Tui]

2
We=p°+Th[VY] = =1, T;u=T, Tec2Z

1
Vo= [ D 12P -2 Ix"P ¢~ Tiniz]? <0
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Example

2.) T > 0, compact geometry, effective curve

/”K\\\ /// : \\
[ \\ / X
| \ ’/
‘; \\ [ \\
‘ \\ \\
\ \
x \ \
\\
2 2
£=1 |21l £=10 |24
8
£€>0 = [x=0, Vp=0= Y [Z22=¢+2In|z| |z
a=2

Geometry still compact, anomalies canceled by NS5 branes.




Example

3.) T < 0, decompactified geometry, non—effective curve

superfield ya=1..8 | pp=l..4 [ pa=1...8 | pm=1.2
lowest component z? yH ¢ xm
gauge charge 1 -2 1 —4

P’[2,2,2,2] with SU(6) bundle
1
A = 5 (7 — @ — T1]

WF|:p0+T|n[\IJl] = I’il:]-, ﬁlZTa T €4Z

1
VDZE[Z|ZE’]2—4Z|X’"|2—§— Tiniz]? <0
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Example

3.) T < 0, decompactified geometry, non—effective curve

2
Iz1l

Geometry decompactified, anomalies canceled with anti—-NS5
branes. J
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Conclusion

Conclusion

GLSMs powerful tool for string model building. |

Anomaly conditions extremely severe, GS mechanism can ameliorate
them (but cannot cancel arbitrary anomalies due to quantization).

Logarithmic counter terms introduce torsion or NS5 branes, which
strongly backreact on geometry.

Thank you for your attention!
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