Matching of Heterotic Orbifold and Blowup Theories via Anomalies

Fabian Rühle

Bethe Center for Theoretical Physics
Universität Bonn

$$
\begin{aligned}
& \qquad 09.11 .2011 \\
& \text { Inaugural Program Bethe Forum, Bonn }
\end{aligned}
$$

Bonn-Coloene Graduate School of Physics and Astronorry

Based on [Blaszczyk, Cabo Bizet, Nilles, FR: 1108.0667]

Outline

(1) Orbifold and CY Model Building
(2) Blowup procedure

- Blowup procedure
- \mathbb{Z}_{7} Orbifold + resolution
(3) Spectrum matching
(4) Anomaly matching

Part I

Recap: Orbifold and CY Model Building

Motivation - Heterotic Model Building

Much effort spent on construction of MSSM-like models in last decade.

Motivation - Heterotic Model Building

Much effort spent on construction of MSSM-like models in last decade.
Approaches in $E_{8} \times E_{8}$ heterotic string theory:

- Orbifold model building [Blaszczyk, Buchmüller, Groot Nibbelink, Hamaguchi, Kim, Kyae, Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, FR, Trapletti, Vaudrevange, Wingerter, ...]
- Calabi-Yau model building [Anderson, Bouchard, Braun, Donagi, Gray, He, Lukas, Ovrut, Palti, Pantev, Waldram, ...]
- Free fermionic constructions [Faraggi, Nanopoulos, Yuan, ...]
- Gepner Models [Dijkstra, Gato-Rivera, Huiszoon, Schellekens, ...]

Motivation - Compactification Geometries

Motivation - Compactification Geometries

Motivation - Compactification Geometries

Orbifold	smooth, generic
singular, non-generic	complicated
simple	
exact CFT calculations possible	only SUGRA approximation

Motivation - Heterotic Model Building

Berechenbarkeit

Evidence for purely stringy constraints only seen in exact CFT calculation, NOT on CY [Blaszczyk, Groot Nibbelink,FR, Trapletti, Vaudrevange]

Motivation - Heterotic Model Building

> Berechenbarkeit
> Evidence for purely stringy constraints only seen in exact CFT calculation, NOT on CY [Blaszczyk, Groot Nibbelink,FR, Trapletti, Vaudrevange]

Enhanced symmetry

Orbifold point of enhanced symmetry: good for pheno, but might miss generic features [Blaszczyk,Groot Nibbelink,FR, Trapletti, Vaudrevange]

Motivation - Heterotic Model Building

Berechenbarkeit

Evidence for purely stringy constraints only seen in exact CFT calculation, NOT on CY [Blaszczyk, Groot Nibbelink,FR, Trapletti, Vaudrevange]

Enhanced symmetry

Orbifold point of enhanced symmetry: good for pheno, but might miss generic features [Blaszczyk,Groot Nibbelink,FR, Trapletti, Vaudrevange]

Anomalies
Anomaly on orbifold drives you away from orbifold point to CY

Motivation - Heterotic Model Building

Berechenbarkeit

Evidence for purely stringy constraints only seen in exact CFT calculation, NOT on CY [Blaszczyk,Groot Nibbelink,FR, Trapletti, Vaudrevange]

Enhanced symmetry

Orbifold point of enhanced symmetry: good for pheno, but might miss generic features [Blaszczyk,Groot Nibbelink,FR, Trapletti,Vaudrevange]

Anomalies
Anomaly on orbifold drives you away from orbifold point to CY

Model building approach

Start on Orbifold (Berechenbarkeit) and carry it over to CY (generality) via blowup.
BUT: Ensure that the Orbifold and CY model match!

Definition of Anomaly

Definition of Anomaly

An anomaly is a symmetry of the classical theory which is broken by quantum effects. (Non-global) anomalies render theory inconsistent and have to be absent!

Definition of Anomaly

Definition of Anomaly

An anomaly is a symmetry of the classical theory which is broken by quantum effects. (Non-global) anomalies render theory inconsistent and have to be absent!

Cancelation of Anomalies
Anomalies can be canceled by axions. Axions provide a Stückelberg mass for the gauge boson [Green,Schwarz]
\Rightarrow Anomaly canceled, gauge group broken

- One should call such a symmetry broken symmetry with canceled anomaly

Definition of Anomaly

Definition of Anomaly

An anomaly is a symmetry of the classical theory which is broken by quantum effects. (Non-global) anomalies render theory inconsistent and have to be absent!

Cancelation of Anomalies
Anomalies can be canceled by axions. Axions provide a Stückelberg mass for the gauge boson [Green,Schwarz]
\Rightarrow Anomaly canceled, gauge group broken

- One should call such a symmetry broken symmetry with canceled anomaly
- One calls such a symmetry anomalous symmetry

Motivation

Definition:

- Definition Orbifold: $\mathbb{O}=T^{6} / \mathbb{Z}_{N}, \quad T^{6}=\mathbb{C}^{3} / \Lambda$
- Model specified via
- Twist vector $v: \mathbb{Z}_{N}$ Orbifold action on \mathbb{C}^{3}
- Shift vector V : Embedding of Orbifold action in gauge sector
- Wilson Lines W: Constant gauge background

Motivation

Definition:

- Definition Orbifold: $\mathbb{O}=T^{6} / \mathbb{Z}_{N}, \quad T^{6}=\mathbb{C}^{3} / \Lambda$
- Model specified via
- Twist vector $v: \mathbb{Z}_{N}$ Orbifold action on \mathbb{C}^{3}
- Shift vector V : Embedding of Orbifold action in gauge sector
- Wilson Lines W: Constant gauge background

Properties:

- Central consistency requirements: Modular Invariance conditions (ensure absence of anomalies)
- At most one anomalous $U(1)_{A}$
- Green-Schwarz mechanism ensures cancelation of anomaly
- Conditions for unbroken SUSY: D- and F-terms

CY Model building

Definition:

- Definition CY: Ricci-flat Kähler manifold
- Model specified via
- Geometry: Usually given in terms of (intersection of) hypersurfaces/divisors in weighted projective spaces
- Gauge Group: Stable vector bundle

CY Model building

Definition:

- Definition CY: Ricci-flat Kähler manifold
- Model specified via
- Geometry: Usually given in terms of (intersection of) hypersurfaces/divisors in weighted projective spaces
- Gauge Group: Stable vector bundle

Properties:

- Central consistency requirements: Bianchi Identities (ensure absence of anomalies)
- Several anomalous $U(1)$ s possible
- Green-Schwarz mechanism ensures cancelation of anomalies
- Conditions for unbroken SUSY: Donaldson-Uhlenbeck-Yau equations

Part II

Blowup procedure

Blowing up orbifolds

Blowing up orbifolds

- Blowup generated by giving VEVs to orbifold fields
- Blowup breaks all GGs (including $U(1)$ s) under which blowup modes are charged
- Singularities replaced by smooth hypersurfaces (exceptional divisors)
- Additional Kähler moduli parameterize the size of these cycles
- Imaginary part of complexified Kähler parameter give axions
- These model-dependent axions cancel $U(1)$ anomalies in blowup [Blumenhagen,Honecker, Weigand] [Groot Nibbelink, Trapletti,Nilles]
[Blaszczyk,Cabo Bizet,Nilles,FR]

Why \mathbb{Z}_{7} ?

Theories can be ambiguous

- Orbifold: Spectrum ambiguous due to brother models or discrete torsion
- CY: Geometry + spectrum ambiguous due to flop transitions

Why \mathbb{Z}_{7} ?

Theories can be ambiguous

- Orbifold: Spectrum ambiguous due to brother models or discrete torsion
- CY: Geometry + spectrum ambiguous due to flop transitions

In \mathbb{Z}_{7}

Geometry complicated enough to be non-trivial and to allow for (semi) realistic MSSM models

Why \mathbb{Z}_{7} ?

Theories can be ambiguous

- Orbifold: Spectrum ambiguous due to brother models or discrete torsion
- CY: Geometry + spectrum ambiguous due to flop transitions

$\ln \mathbb{Z}_{7}$

Geometry complicated enough to be non-trivial and to allow for (semi) realistic MSSM models

Nevertheless, complications can be avoided:

- Orbifold:
- No fixed tori \Rightarrow No brother models

Why \mathbb{Z}_{7} ?

Theories can be ambiguous

- Orbifold: Spectrum ambiguous due to brother models or discrete torsion
- CY: Geometry + spectrum ambiguous due to flop transitions

$\ln \mathbb{Z}_{7}$

Geometry complicated enough to be non-trivial and to allow for (semi) realistic MSSM models

Nevertheless, complications can be avoided:

- Orbifold:
- No fixed tori \Rightarrow No brother models
- CY:
- Unique triangulation \Rightarrow No flop transitions
- Only compact divisors \Rightarrow Bls decouple + solved locally

\mathbb{Z}_{7} Orbifold

$$
\mathbb{O}=T^{6} / \mathbb{Z}_{7}, \quad T^{6}=\mathbb{C}^{3} / \Lambda_{S U(7)}
$$

Model specified via [Casas,de la Maccora,Mondragon,Munoz]

- Twist vector $v=\frac{1}{7}(1,2,-3): 3$ twisted sectors, 7 FP
- Shift vector

$$
V=\frac{1}{7}(0,0,-1,-1,-1,5,-2,6)(-1,-1,0,0,0,0,0,0)
$$

- Wilson Line

$$
W=\frac{1}{7}(-1,-1,-1,-1,-1,-10,2,-9)(4,3,-3,0,0,0,0,0)
$$

\mathbb{Z}_{7} Orbifold

$$
\mathbb{O}=T^{6} / \mathbb{Z}_{7}, \quad T^{6}=\mathbb{C}^{3} / \Lambda_{S U(7)}
$$

Model specified via [Casas,de la Maccora,Mondragon,Munoz]

- Twist vector $v=\frac{1}{7}(1,2,-3): 3$ twisted sectors, 7 FP
- Shift vector

$$
V=\frac{1}{7}(0,0,-1,-1,-1,5,-2,6)(-1,-1,0,0,0,0,0,0)
$$

- Wilson Line

$$
W=\frac{1}{7}(-1,-1,-1,-1,-1,-10,2,-9)(4,3,-3,0,0,0,0,0)
$$

Spectrum

GG: $[S U(3) \times S U(2)]_{\text {vis }} \times[S O(10)]_{\text {hidden }} \times U(1)^{8}$

$(\mathbf{3}, \mathbf{2}, \mathbf{1})$	$(\mathbf{3}, \mathbf{1}, \mathbf{1})$	$(\overline{\mathbf{3}, 1,1)}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1 0})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
3	12	18	21	1	133

\mathbb{Z}_{7} Blowup Procedure

\mathbb{Z}_{7} Blowup Procedure

Resolve T^{6} / \mathbb{Z}_{7} FP by gluing in local $\mathbb{C}^{3} / \mathbb{Z}_{7}$ resolutions
[Lüst,Reffert,Scheidegger,Stieberger]
Relevant divisors: $R_{a}, a=1,2,3, \quad E_{k, \sigma}, k=1,2,4, \sigma=1, \ldots, 7$
Get topological data (intersection numbers, Chern classes,...) from toric diagram

\mathbb{Z}_{7} Calabi-Yau

Gauge bundle: choose $U(1)$ line bundle

$$
\mathcal{F}=E_{k, \sigma} V_{k, \sigma}^{\prime} H_{1}
$$

Properties:

- $U(1)$ bundles automatically stable
- $V_{k, \sigma}$ only charged under $U(1)^{8}$, not under non-Abelian groups
- Expand in $E_{k, \sigma}$ only \Rightarrow gauge flux vanishes in blowdown
- Spectrum calculable via Index Theorem (much easier than bundle cohomology)
- \mathcal{F} solves all BIs \Rightarrow anomaly free
- \mathcal{F} solves all DUY equations \Rightarrow SUSY intact for arbitrarily large volumes

Part III

Spectrum Comparison

Spectra on Orbifold and CY

Calculation of Spectrum

- Orbifold: Construct all $P_{\text {Sh }}$ fulfilling masslessness condition, projection, level matching
- CY: Apply Atiyah-Singer index theorem to 480 root vectors of $\Lambda_{E_{8} \times E_{8}}$

Spectra on Orbifold and CY

Calculation of Spectrum

- Orbifold: Construct all $P_{\text {Sh }}$ fulfilling masslessness condition, projection, level matching
- CY: Apply Atiyah-Singer index theorem to 480 root vectors of $\Lambda_{E_{8} \times E_{8}}$

Spectrum

GG: $[S U(3) \times S U(2)]_{\text {vis }} \times[S O(10)]_{\text {hidden }} \times U(1)^{8}$

irrep	$(\mathbf{3 , 2 , 1})$	$(\mathbf{3 , 1 , 1})$	$(\mathbf{3}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$	$(\mathbf{1 , 1 , 1 0)}$	$(\mathbf{1 , 1 , 1})$
Orbi	3	12	18	21	1	133
BU	3	10	16	17	1	86

Origin of differences:

- Particles massive in blowup: $\mathcal{W} \supset \Phi_{k, \sigma}^{\mathrm{BU}-\mathrm{Mode}} \Phi_{k, \sigma \gamma}^{\mathrm{Orb}} \Phi_{k, \sigma \gamma^{\prime}}^{\mathrm{Orb}}$
- $\operatorname{rk}(\mathcal{F})=8 \Rightarrow U(1)^{8}$ broken completely, rest unbroken

Field Redefinitions

Matching of theories:

- 1 anomalous $U(1)$ on orbifold \Leftrightarrow multiple anomalous $U(1)$ in blowup

Field Redefinitions

Matching of theories:

- 1 anomalous $U(1)$ on orbifold \Leftrightarrow multiple anomalous $U(1)$ in blowup
- States on Orbifold given by $P_{\text {sh }} \Leftrightarrow$ States on CY given by $\Lambda_{E_{8} \times E_{8}}$ vectors

Field Redefinitions

Matching of theories:

- 1 anomalous $U(1)$ on orbifold \Leftrightarrow multiple anomalous $U(1)$ in blowup
- States on Orbifold given by $P_{\text {sh }} \Leftrightarrow$ States on CY given by $\Lambda_{E_{8} \times E_{8}}$ vectors
- VEV of Orbifold states \Leftrightarrow Size of blowup cycles

Field Redefinitions

Matching of theories:

- 1 anomalous $U(1)$ on orbifold \Leftrightarrow multiple anomalous $U(1)$ in blowup
- States on Orbifold given by $P_{\text {sh }} \Leftrightarrow$ States on CY given by $\Lambda_{E_{8} \times E_{8}}$ vectors
- VEV of Orbifold states \Leftrightarrow Size of blowup cycles

Field Redefinitions:
Blowup modes on Orbifold \mapsto Kähler modulus + local axion
$\Phi_{k, \sigma}^{\mathrm{BU}-\mathrm{Mode}}=e^{b_{k, \sigma}+i \beta_{k, \sigma}}, \quad k:$ twisted sector, $\sigma:$ fixed point

Field Redefinitions

Matching of theories:

- 1 anomalous $U(1)$ on orbifold \Leftrightarrow multiple anomalous $U(1)$ in blowup
- States on Orbifold given by $P_{\text {sh }} \Leftrightarrow$ States on CY given by $\Lambda_{E_{8} \times E_{8}}$ vectors
- VEV of Orbifold states \Leftrightarrow Size of blowup cycles

Field Redefinitions:
Blowup modes on Orbifold \mapsto Kähler modulus + local axion

$$
\Phi_{k, \sigma}^{\text {BU-Mode }}=e^{b_{k, \sigma}+i \beta_{k, \sigma}}, \quad k: \text { twisted sector, } \sigma: \text { fixed point }
$$

Twisted states redefined as

$$
\begin{aligned}
& \Phi_{\sigma, \gamma}^{\text {BU-State }}=e^{-\sum_{k} \kappa_{k, \sigma}\left(b_{k, \sigma}+i \beta_{k, \sigma}\right)} \phi^{\text {Orb-State }} \\
& Q_{\sigma, \gamma}^{\mathrm{BU}}=Q_{k, \sigma}^{\text {Orb }}+\sum_{k} \kappa_{k, \sigma} V_{k, \sigma}, \quad Q_{\sigma, \gamma}^{\mathrm{BU}} \in \Lambda_{E_{8} \times E_{8}}, \quad Q_{k, \sigma}^{\text {Orb }}=P_{\mathrm{Sh}}
\end{aligned}
$$

Local Multiplicities

Global Multiplicity Operator: $\quad N=\frac{1}{6} \int_{X} \mathcal{F}^{3}-\frac{1}{4} \operatorname{tr} \mathcal{R}^{2} \mathcal{F}$

Local Multiplicities

Global Multiplicity Operator: $\quad N=\frac{1}{6} \int_{X} \mathcal{F}^{3}-\frac{1}{4} \operatorname{tr} \mathcal{R}^{2} \mathcal{F}$
Local Multiplicity Operator:

$$
N=\sum_{\sigma} N(\sigma)
$$

Local Multiplicities

Global Multiplicity Operator:

$$
N=\frac{1}{6} \int_{X} \mathcal{F}^{3}-\frac{1}{4} \operatorname{tr} \mathcal{R}^{2} \mathcal{F}
$$

Local Multiplicity Operator:

$$
N=\sum_{\sigma} N(\sigma)
$$

Example:

Name	N	$N(1)$	$N(2)$	$N(3)$	$N(4)$	$N(5)$	$N(6)$	$N(7)$
$\lambda_{(3,2,1)}$	1	$\frac{1}{7}$						
Q_{1}	1	$\frac{1}{7}$						

- only 1 Orbifold state redefined to $E_{8} \times E_{8}$ vector $\lambda_{(3,2,1)}$
- state distributed over all $\mathrm{FPs} \Rightarrow$ untwisted state

Local Multiplicities

Global Multiplicity Operator:

$$
N=\frac{1}{6} \int_{X} \mathcal{F}^{3}-\frac{1}{4} \operatorname{tr} \mathcal{R}^{2} \mathcal{F}
$$

Local Multiplicity Operator:

$$
N=\sum_{\sigma} N(\sigma)
$$

Example:

Name	N	$N(1)$	$N(2)$	$N(3)$	$N(4)$	$N(5)$	$N(6)$	$N(7)$
Q_{2}	1	1	0	0	0	0	0	0
$\lambda_{(3,2,1)}^{\prime}$	1	1	$-\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$

- only 1 Orbifold state redefined to $E_{8} \times E_{8}$ vector $\lambda_{(3,2,1)}^{\prime}$
- state located at FP 1
- other contributions of $\pm \frac{1}{7}$ correspond to untwisted states that are projected out

Local Multiplicities

Global Multiplicity Operator:

$$
N=\frac{1}{6} \int_{X} \mathcal{F}^{3}-\frac{1}{4} \operatorname{tr} \mathcal{R}^{2} \mathcal{F}
$$

Local Multiplicity Operator:

$$
N=\sum_{\sigma} N(\sigma)
$$

Example:

Name	N	$N(1)$	$N(2)$	$N(3)$	$N(4)$	$N(5)$	$N(6)$	$N(7)$
h_{6}	-1	0	0	-1	0	0	0	0
h_{14}	1	0	0	0	1	0	0	0
h_{20}	1	0	0	0	0	1	0	0
$\lambda_{(1,2,1)}$	1	$\frac{1}{7}$	$\frac{1}{7}$	-1	$\frac{6}{7}$	$\frac{6}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$

- several Orbifold states (with both chiralities) redefined to same $E_{8} \times E_{8}$ vector $\lambda_{(1,2,1)}$
- states located at FP 3, 4, 5

Mass Terms

Name	N	$N(1)$	$N(2)$	$N(3)$	$N(4)$	$N(5)$	$N(6)$	$N(7)$
h_{1}	1	$\frac{1}{7}$						
h_{4}	1	1	0	0	0	0	0	0
h_{17}	-1	-1	0	0	0	0	0	0
$\lambda_{(1,2,1)}^{\prime}$	1	$\frac{1}{7}$						

Mass Terms

Name	N	$N(1)$	$N(2)$	$N(3)$	$N(4)$	$N(5)$	$N(6)$	$N(7)$
h_{1}	1	$\frac{1}{7}$						
h_{4}	1	1	0	0	0	0	0	0
h_{17}	-1	-1	0	0	0	0	0	0
$\lambda_{(1,2,1)}^{\prime}$	1	$\frac{1}{7}$						

Field redefinitions

$$
h_{4}^{\mathrm{BU}}=e^{-b_{1,1}+b_{4,1}} h_{4}^{\mathrm{Orb}}, \quad h_{17}^{\mathrm{BU}}=e^{b_{1,1}+b_{2,1}-b_{4,1}} h_{17}^{\mathrm{Orb}}
$$

Mass Terms

Name	N	$N(1)$	$N(2)$	$N(3)$	$N(4)$	$N(5)$	$N(6)$	$N(7)$
h_{1}	1	$\frac{1}{7}$						
h_{4}	1	1	0	0	0	0	0	0
h_{17}	-1	-1	0	0	0	0	0	0
$\lambda_{(1,2,1)}^{\prime}$	1	$\frac{1}{7}$						

Field redefinitions

$$
h_{4}^{\mathrm{BU}}=e^{-b_{1,1}+b_{4,1}} h_{4}^{\mathrm{Orb}}, \quad h_{17}^{\mathrm{BU}}=e^{b_{1,1}+b_{2,1}-b_{4,1}} h_{17}^{\mathrm{Orb}}
$$

Mass term in blowup
$h_{4}^{\mathrm{BU}} h_{17}^{\mathrm{BU}}=e^{-b_{1,1}+b_{4,1}+b_{1,1}-b_{4,1}+b_{2,1}} h_{4}^{\mathrm{Orb}} h_{17}^{\mathrm{Orb}}=\Phi_{2,1}^{\mathrm{BU}-\mathrm{Mode}} h_{4}^{\mathrm{Orb}} h_{17}^{\mathrm{Orb}}$

Mass Terms

Name	N	$N(1)$	$N(2)$	$N(3)$	$N(4)$	$N(5)$	$N(6)$	$N(7)$
h_{1}	1	$\frac{1}{7}$						
h_{4}	1	1	0	0	0	0	0	0
h_{17}	-1	-1	0	0	0	0	0	0
$\lambda_{(1,2,1)}^{\prime}$	1	$\frac{1}{7}$						

Field redefinitions

$$
h_{4}^{\mathrm{BU}}=e^{-b_{1,1}+b_{4,1}} h_{4}^{\mathrm{Orb}}, \quad h_{17}^{\mathrm{BU}}=e^{b_{1,1}+b_{2,1}-b_{4,1}} h_{17}^{\mathrm{Orb}}
$$

Mass term in blowup
$h_{4}^{\mathrm{BU}} h_{17}^{\mathrm{BU}}=e^{-b_{1,1}+b_{4,1}+b_{1,1}-b_{4,1}+b_{2,1}} h_{4}^{\mathrm{Orb}} h_{17}^{\mathrm{Orb}}=\Phi_{2,1}^{\mathrm{BU}-\mathrm{Mode}} h_{4}^{\mathrm{Orb}} h_{17}^{\mathrm{Orb}}$

- Local mass term generated via VEV of blowup mode $\left\langle\Phi_{2,1}^{\mathrm{BU}}-\mathrm{Mode}\right\rangle \neq 0$
- $b_{2,1} \rightarrow \infty$: term massive, $\quad b_{2,1} \rightarrow-\infty$: zero mass
- Non-local (instantonic) mass terms NOT seen in blowup

Local R-Symmetry

Observation

- Mass terms via redefinition at work in most cases
- BUT: Redefinition sometimes not unique

Local R-Symmetry

Observation

- Mass terms via redefinition at work in most cases
- BUT: Redefinition sometimes not unique
$\mathbb{C}^{3} / \mathbb{Z}_{7}$ Orbifold has locally $U(1)_{R}^{3} \mathrm{R}$-symmetry $z_{i} \rightarrow e^{i \alpha} z_{i}$
This R-symmetry is broken globally by torus lattice $\Lambda_{S U(7)}$

Local R-Symmetry

Observation

- Mass terms via redefinition at work in most cases
- BUT: Redefinition sometimes not unique
$\mathbb{C}^{3} / \mathbb{Z}_{7}$ Orbifold has locally $U(1)_{R}^{3} \mathrm{R}$-symmetry $z_{i} \rightarrow e^{i \alpha} z_{i}$
This R-symmetry is broken globally by torus lattice $\Lambda_{S U(7)}$ without R-symmetry:

$$
\mathcal{W} \supset\left(\begin{array}{lll}
s_{111} & s_{112} & s_{113}
\end{array}\right)\left(\begin{array}{lll}
a_{11} \Phi_{2,4}^{B M} & a_{12} \Phi_{2,4}^{B M} & a_{13} \Phi_{4,4}^{B M} \\
a_{21} \Phi_{2,4}^{B M} & a_{22} \Phi_{2,4}^{B M} & a_{23} \Phi_{4,4}^{B M} \\
a_{31} \Phi_{2,4}^{B M} & a_{32} \Phi_{2,4}^{B M} & a_{33} \Phi_{4,4}^{B M}
\end{array}\right)\left(\begin{array}{l}
s_{25} \\
s_{26} \\
s_{70}
\end{array}\right)
$$

$\Rightarrow 6$ singlets massive

Local R-Symmetry

Observation

- Mass terms via redefinition at work in most cases
- BUT: Redefinition sometimes not unique
$\mathbb{C}^{3} / \mathbb{Z}_{7}$ Orbifold has locally $U(1)_{R}^{3} \mathrm{R}$-symmetry $z_{i} \rightarrow e^{i \alpha} z_{i}$
This R-symmetry is broken globally by torus lattice $\Lambda_{S U(7)}$ with R-symmetry:

$$
\mathcal{W} \supset\left(\begin{array}{lll}
s_{111} & s_{112} & s_{113}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
a_{21} \Phi_{2,4}^{\mathrm{BM}} & 0 & a_{23} \Phi_{4,4}^{\mathrm{BM}} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
s_{25} \\
s_{26} \\
s_{70}
\end{array}\right)
$$

$\Rightarrow 2$ singlets massive, 4 singlets massless

Local R-Symmetry

Observation

- Mass terms via redefinition at work in most cases
- BUT: Redefinition sometimes not unique
$\mathbb{C}^{3} / \mathbb{Z}_{7}$ Orbifold has locally $U(1)_{R}^{3} \mathrm{R}$-symmetry $z_{i} \rightarrow e^{i \alpha} z_{i}$
This R-symmetry is broken globally by torus lattice $\Lambda_{S U(7)}$ with R-symmetry:

$$
\mathcal{W} \supset\left(\begin{array}{lll}
s_{111} & s_{112} & s_{113}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
a_{21} \Phi_{2,4}^{\mathrm{BM}} & 0 & a_{23} \Phi_{4,4}^{\mathrm{BM}} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
s_{25} \\
s_{26} \\
s_{70}
\end{array}\right)
$$

$\Rightarrow 2$ singlets massive, 4 singlets massless

Result

We see 4 singlets $\Rightarrow R$-symmetry violation suppressed by volume R-symmetry+consistency with spectrum \Rightarrow Redefinition unique

Mass Terms - Summary

Mass Terms I - Local mass terms

- Local mass terms between states at same FP induced via VEVs
- Kähler parameters govern size of mass

Mass Terms II - Non-local mass terms

- Non-local, instantonic mass terms between states at different FPs not seen in blowup
- Mass term suppressed as $e^{-\mathrm{vol}(\mathcal{C})}$

Mass Terms III - R-parity protected states

- States protected by local R-Symmetry massless in blowup
- R-symmetry broken non-locally by lattice
- Effect again suppressed by volume

Part IV

Anomalies

Anomaly Polynomial

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{6}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

General remarks:

- \mathcal{F}, \mathcal{R} : internal (6D), $\quad F, R$: external (4D)
- \mathcal{F} Abelian: $\mathcal{F}=E_{r} V_{r}^{\prime} H_{l}$
- $\mathcal{F}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \in E_{8} \otimes E_{8}$

Anomaly Polynomial

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{6}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

$\mathrm{U}(1)_{\mathrm{A}}^{\prime}$

$\mathrm{U}(1)_{\underline{\text { In }}}^{\prime \prime}$
$\mathrm{U}(1)_{\mathrm{A}}^{\prime}$

$1^{\text {st }}$ term:

- $\operatorname{tr}[\mathcal{F F}]$ projects onto Abelian part of F
- Generically $\operatorname{tr}[\mathcal{F} F]=0 \Leftrightarrow \mathcal{F} \perp F \Leftrightarrow I_{6}=0$
- Anomalies: $U(1)_{A} \times U(1)_{A}^{\prime} \times U(1)_{A}^{\prime \prime}, U(1)_{A}^{2} \times U(1)_{A}^{\prime}, U(1)_{A}^{3}$

Anomaly Polynomial

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{6}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

$2^{\text {nd }}$ term:

- $\operatorname{tr}[\mathcal{F} F]$ projects onto Abelian part of F with $\mathcal{F} \not \not F$
- From $\operatorname{tr} F^{2}$, we get Abelian and non-Abelian anomalies
- Anomalies: $U(1)_{A} \times G \times G, G=U(1), U(1)_{A}, S U(N), S O(N), \ldots$

Anomaly Polynomial

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{6}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

grav
$3^{\text {rd }}$ term:

- $\operatorname{tr}[\mathcal{F} F]$ projects onto Abelian part of Fwith $\mathcal{F} \nVdash F$
- From $\operatorname{tr} R^{2}$, we get gravity anomalies
- Anomalies: $U(1)_{A} \times \operatorname{grav} \times$ grav

Calculation of Anomalies

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{6}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

(1) Calculate contributions from anomaly polynomial
(2) Sum over charges + representations for all massless particles

Calculation of Anomalies

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{6}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

(1) Calculate contributions from anomaly polynomial
(2) Sum over charges + representations for all massless particles

Result

Both results agree \Rightarrow strong consistency check on the spectrum

Anomaly Matching

Orbifold perspective
One anomalous $U(1)+$ one axion $a^{\text {Orb }}$ to cancel it via $a^{\text {Orb }} X_{4}^{\text {Orb }}$

Anomaly Matching

Orbifold perspective

One anomalous $U(1)+$ one axion $a^{\text {Orb }}$ to cancel it via $a^{\text {Orb }} X_{4}^{\text {Orb }}$

Orbifold resolution perspective

Contribution to anomaly from redefinition $I_{6}^{\mathrm{BU}}=I_{6}^{\mathrm{Orb}}+I_{6}^{\text {red }}$ $I_{6}^{\text {red }}$ accounted for by blowup modes: $\sum_{k, \sigma} \tau_{k, \sigma} X_{4}^{\text {red }}$

Anomaly Matching

Orbifold perspective

One anomalous $U(1)+$ one axion $a^{\text {Orb }}$ to cancel it via $a^{\text {Orb }} X_{4}^{\text {Orb }}$

Orbifold resolution perspective

Contribution to anomaly from redefinition $I_{6}^{\mathrm{BU}}=I_{6}^{\mathrm{Orb}}+I_{6}^{\text {red }}$ $I_{6}^{\text {red }}$ accounted for by blowup modes: $\sum_{k, \sigma} \tau_{k, \sigma} X_{4}^{\text {red }}$

Calabi-Yau perspective
Start with 10D anomaly polynomial + integrate out internal space

$$
\begin{aligned}
& I_{12}=X_{4} X_{8}=X_{2,6} X_{4,0}+X_{2,2} X_{4,4} \\
& I_{6}^{B U}=\int_{X} I_{12}=X_{2}^{\text {uni }} X_{4}^{\text {uni }}+\sum_{k, \sigma} X_{2}^{k, \sigma} X_{4}^{k, \sigma}
\end{aligned}
$$

Anomaly canceled by universal and local contributions

$$
a^{\text {uni }} X_{4}^{\text {uni }}+\sum_{k, \sigma} \beta^{k, \sigma} X_{4}^{k, \sigma}
$$

Anomaly Matching

Relate orbifold blowup to CY anomaly

$$
a^{\text {Orb }} X_{4} \text { Orb }+\sum_{k, \sigma} \tau_{k, \sigma} X_{4}^{\text {red }} \stackrel{!}{=} a^{\text {uni }} X_{4}^{\text {uni }}+\sum_{k, \sigma} \beta^{k, \sigma} X_{4}^{k, \sigma}
$$

Anomaly Matching

Relate orbifold blowup to CY anomaly

$$
a^{\mathrm{Orb}} X_{4}^{\mathrm{Orb}}+\sum_{k, \sigma} \tau_{k, \sigma} X_{4}{ }^{\text {red }} \stackrel{!}{=} a^{\mathrm{uni}} X_{4}^{\mathrm{uni}}+\sum_{k, \sigma} \beta^{k, \sigma} X_{4}{ }^{k, \sigma}
$$

Solution

- $\beta_{k, \sigma}=\tau_{k, \sigma} \Rightarrow$ local axions = blowup modes

Anomaly Matching

Relate orbifold blowup to CY anomaly

$$
{ }^{\text {arb }} X_{4}^{\text {Orb }}+\sum_{k, \sigma} \tau_{k, \sigma} X_{4}^{\text {red }} \stackrel{!}{=} a^{\text {uni }} X_{4}^{\text {uni }}+\sum_{k, \sigma} \beta^{k, \sigma} X_{4}^{k, \sigma}
$$

Solution

- $\beta_{k, \sigma}=\tau_{k, \sigma} \Rightarrow$ local axions = blowup modes
- $a^{\text {uni }} \sim a^{\mathrm{Orb}}+c_{k, \sigma} \tau_{k, \sigma} \Rightarrow$ universal axion changes

Anomaly Matching

Relate orbifold blowup to CY anomaly

$$
{ }^{\text {arb }} X_{4}^{\text {Orb }}+\sum_{k, \sigma} \tau_{k, \sigma} X_{4}^{\text {red }} \stackrel{!}{=} a^{\text {uni }} X_{4}^{\text {uni }}+\sum_{k, \sigma} \beta^{k, \sigma} X_{4}^{k, \sigma}
$$

Solution

- $\beta_{k, \sigma}=\tau_{k, \sigma} \Rightarrow$ local axions = blowup modes
- $a^{\mathrm{uni}} \sim a^{\mathrm{Orb}}+c_{k, \sigma} \tau_{k, \sigma} \Rightarrow$ universal axion changes

Interpretation

- The blowup modes indeed provide the local axions to cancel the anomalies in blowup

Anomaly Matching

Relate orbifold blowup to CY anomaly

$$
{ }^{\text {Orb }} X_{4}^{\text {Orb }}+\sum_{k, \sigma} \tau_{k, \sigma} X_{4}^{\text {red }} \stackrel{!}{=} a^{\text {uni }} X_{4}^{\text {uni }}+\sum_{k, \sigma} \beta^{k, \sigma} X_{4}^{k, \sigma}
$$

Solution

- $\beta_{k, \sigma}=\tau_{k, \sigma} \Rightarrow$ local axions = blowup modes
- $a^{\mathrm{uni}} \sim a^{\mathrm{Orb}}+c_{k, \sigma} \tau_{k, \sigma} \Rightarrow$ universal axion changes

Interpretation

- The blowup modes indeed provide the local axions to cancel the anomalies in blowup
- The universal axion on the orbifold receives contribution from the blowup modes

Conclusion

- Blowup procedure
- VEV of blowup field $\widehat{=}$ size of blowup cycle
- phase of blowup field $\hat{=}$ local axion

Conclusion

- Blowup procedure
- VEV of blowup field $\widehat{=}$ size of blowup cycle
- phase of blowup field $\widehat{=}$ local axion
- Spectrum matching
- Local multiplicity operator helps identifying states
- Instantonic mass term + global R-symmetry breaking not seen in blowup
- Could match all 186 orbifold fields to blowup states or explain why they are lifted

Conclusion

- Blowup procedure
- VEV of blowup field $\widehat{=}$ size of blowup cycle
- phase of blowup field $\hat{=}$ local axion
- Spectrum matching
- Local multiplicity operator helps identifying states
- Instantonic mass term + global R-symmetry breaking not seen in blowup
- Could match all 186 orbifold fields to blowup states or explain why they are lifted
- Anomaly computation
- Anomalies from spectrum and from Anomaly polynomial match
- Blowup modes provide axions that cancel extra anomalous $U(1) \mathrm{s}$

Conclusion

- Blowup procedure
- VEV of blowup field $\widehat{=}$ size of blowup cycle
- phase of blowup field $\hat{=}$ local axion
- Spectrum matching
- Local multiplicity operator helps identifying states
- Instantonic mass term + global R-symmetry breaking not seen in blowup
- Could match all 186 orbifold fields to blowup states or explain why they are lifted
- Anomaly computation
- Anomalies from spectrum and from Anomaly polynomial match
- Blowup modes provide axions that cancel extra anomalous $U(1) \mathrm{s}$

Thank you for your attention!

