Anomalies and Discrete Symmetries in Heterotic String Constructions

Fabian Rühle
Bethe Center for Theoretical Physics
Bonn University

Northeastern University - 07/16/2012

Based on:
[Lüdeling,FR,Wieck: 1203.5789], [Blaszczyk, Groot Nibbelink,FR: 1111.5852],
[Blaszczyk,Cabo Bizet,Nilles,FR: 1108.0667]

Motivation

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- ...

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- ...

But it also has problems

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of $\boldsymbol{\mu}$-term

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- ...

But it also has problems

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ-term
\Rightarrow Introduce symmetries that suppress/forbid the terms

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- ...

But it also has problems

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ-term
\Rightarrow Introduce symmetries that suppress/forbid the terms
- Lacks UV completion

Motivation

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- ...

But it also has problems

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ-term
\Rightarrow Introduce symmetries that suppress/forbid the terms
- Lacks UV completion
\Rightarrow Embed in UV complete theory like String Theory

Motivation - Discrete Symmetries

In the past, many discrete symmetries proposed to forbid bad terms

$$
\begin{aligned}
W_{\text {bad }} \supset & \mu H_{u} H_{d}+L H \\
+ & L Q d^{c}+Q d^{c} d^{c}+L L e^{c} \\
+ & Q Q Q L+u^{c} u^{c} d^{c} e^{c}+\ldots
\end{aligned}
$$

Motivation - Discrete Symmetries

In the past, many discrete symmetries proposed to forbid bad terms

$$
\begin{aligned}
& W_{\text {bad }} \supset \mu H_{u} H_{d}+1< \\
&+I Q C+u^{c} u^{c} d^{c} e^{c}+\ldots \\
&+Q Q Q L+\cdots
\end{aligned}
$$

- \mathbb{Z}_{2} Matter Parity [Farrar,Fayet; Dimopoulos,Raby,Wilczek]

Motivation - Discrete Symmetries

In the past, many discrete symmetries proposed to forbid bad terms

$$
\begin{aligned}
W_{\text {bad }} \supset & \mu H_{u} H_{d}+L H \\
+ & L Q d^{c}+Q d^{c} d^{c}+L L e^{c} \\
+ & u^{2} e^{c}+\ldots
\end{aligned}
$$

- \mathbb{Z}_{2} Matter Parity [Farrar,Fayet; Dimopoulos,Raby,Wilczek]
- \mathbb{Z}_{3} Baryon triality [lbanez,Ross]

Motivation - Discrete Symmetries

In the past, many discrete symmetries proposed to forbid bad terms

$$
\begin{aligned}
W_{\text {bad }} \supset & \mu H_{u} H_{d}+1< \\
+I & \\
& +1+u^{c}+\ldots
\end{aligned}
$$

- \mathbb{Z}_{2} Matter Parity [Farrar,Fayet; Dimopoulos,Raby,Wilczek]
- \mathbb{Z}_{3} Baryon triality [lbanez, Ross]
- \mathbb{Z}_{6} anomaly-free proton hexality
[Babu,Gogoladze,Wang; Dreiner,Luhn, Thormeier]

Motivation - Discrete Symmetries

In the past, many discrete symmetries proposed to forbid bad terms

$$
\begin{aligned}
& W_{\text {bad }} \supset \text { Hit } \text { d }_{d}+\text { EKK }
\end{aligned}
$$

$$
\begin{aligned}
& + \text { शिया }+u \text { Il }^{2} e^{c}+\ldots
\end{aligned}
$$

- \mathbb{Z}_{2} Matter Parity [Farrar,Fayet; Dimopoulos,Raby,Wilczek]
- \mathbb{Z}_{3} Baryon triality [lbanez, Ross]
- \mathbb{Z}_{6} anomaly-free proton hexality
[Babu,Gogoladze,Wang; Dreiner,Luhn, Thormeier]
- \mathbb{Z}_{4}^{R} anomaly-universal R-symmetry
[Lee, Raby, Ratz, Ross,Schieren,Schmidt-Hoberg, Vaudrevange]

Motivation - Discrete Symmetries

In the past, many discrete symmetries proposed to forbid bad terms

$$
\begin{aligned}
& W_{\text {bad }} \supset \text { Hit } \text { d }_{d}+\text { EKK }
\end{aligned}
$$

$$
\begin{aligned}
& + \text { शिया }+u \text { Il }^{2} e^{c}+\ldots
\end{aligned}
$$

- \mathbb{Z}_{2} Matter Parity [Farrar,Fayet; Dimopoulos,Raby,Wilczek]
- \mathbb{Z}_{3} Baryon triality [lbanez, Ross]
- \mathbb{Z}_{6} anomaly-free proton hexality
[Babu,Gogoladze,Wang; Dreiner,Luhn, Thormeier]
- \mathbb{Z}_{4}^{R} anomaly-universal R-symmetry
[Lee, Raby, Ratz, Ross,Schieren,Schmidt-Hoberg, Vaudrevange]
- ...

Motivation - String Embedding

Much effort spent on construction of MSSM-like models in last decade.

Motivation - String Embedding

Much effort spent on construction of MSSM-like models in last decade.
Approaches in $E_{8} \times E_{8}$ heterotic string theory:

- Orbifold model building [Blaszczyk, Buchmüller, Groot Nibbelink, Hamaguchi, Kim, Kyae, Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, FR, Trapletti, Vaudrevange, Wingerter, ...]
- Calabi-Yau model building [Anderson, Bouchard, Braun, Donagi, Gray, He, Lukas, Ovrut, Palti, Pantev, Waldram, ...]
- Free fermionic constructions [Faraggi, Nanopoulos, Yuan, ...]
- Gepner Models [Dijkstra, Gato-Rivera, Huiszoon, Schellekens, ...]

I will focus on the first two approaches.

Outline

(1) Anomalies

- Definition and Description
- Green-Schwarz mechanism
(2) Green-Schwarz mechanism in String Theory
- Structure of anomaly polynomial
- Introduction of Orbifolds/CYs
- GS in orbifold compactifications
- GS in smooth CY compactifications
(3) Example: The T^{6} / \mathbb{Z}_{3} orbifold and its resolution
- Orbifold construction
- Toric resolution of orbifold
(4) Remnant discrete symmetries
- Remnant non- R symmetries
- Remnant R symmetries
- Calculation of (non-) R symmetry charges
(5) Conclusion

Part I

Anomalies

Definition of Anomalies

Definition of Anomaly

An anomaly is a symmetry of the classical theory which is broken by quantum effects. Gauge anomalies render theory inconsistent and have to be absent!

Properties of Anomalies

- Anomalies arise at 1-loop
- They are determined by the chiral spectrum
- Can be determined from variation of path integral measure [Fujikawa]
- Can be described in terms of anomaly polynomial [Wess,Zumino;Stora;Alvarez-Gaume,Ginsparg]

Description of Anomalies - Path Integrals

From path integral:

- Look at trafo $\boldsymbol{\Psi} \rightarrow \boldsymbol{\Psi}^{\prime}$ parameterized by trafo parameter λ :

$$
\int \mathcal{D} \Psi e^{i S} \rightarrow \int \mathcal{D} \Psi^{\prime} J(\lambda) e^{i S}, \quad J(\lambda)=e^{i \mathcal{A}}=e^{i \int d^{D} \times I_{D}}
$$

- It is more convenient to work with anomaly polynomial I_{D+2}

$$
\mathrm{d} I_{D}=\delta_{\lambda} I_{D+1} \quad \mathrm{~d} I_{D+1}=I_{D+2} \quad \text { "Descent equations" }
$$

- Anomaly form I_{D} : linear in trafo parameter λ, polynomial in gauge connections and field strengths
- Chern Simons form I_{D+1} : poynomial in gauge connections and field strengths
- Anomaly polynomial I_{D+2} : closed and gauge invariant polynomial in the field strengths

Description of Anomalies - Feynman diagrams

From Feynman diagram (here $D=4$):

- Internal legs: Chiral fermions f
- External legs: Gauge bosons / Gravity
- $\mathcal{A}=\mathcal{A}_{G-G-U(1)}+\mathcal{A}_{U(1)_{A}-U(1)_{B}-U(1)_{C}}+\mathcal{A}_{\text {grav }- \text { grav }-U(1)}$

$$
\begin{aligned}
\mathcal{A}_{G-G-U(1)} & \propto \sum_{\mathrm{f}} q_{f} \ell(r(\mathrm{f})) \\
\mathcal{A}_{U(1)_{A}-U(1)_{B}-U(1)_{C}} & \propto \sum_{\mathrm{f}} q_{f}^{A} q_{f}^{B} q_{f}^{C} \\
\mathcal{A}_{\text {grav-grav }-U(1)} & \propto \sum_{\mathrm{f}} q_{f}
\end{aligned}
$$

Calculation of discrete \mathbb{Z}_{N} anomalies:

- Useful to think of $\mathbb{Z}_{N} \subset U(1)$
- Quadratic/cubic/mixed $U(1)-\mathbb{Z}_{N}$ anomalies ill-defined [Banks,Seiberg]
- \Rightarrow Anomalies $\mathcal{A}_{G-G-\mathbb{Z}_{N}}, \mathcal{A}_{U(1)_{A}-U(1)_{B}-\mathbb{Z}_{N}}, \mathcal{A}_{\text {grav-grav- }} \mathbb{Z}_{N}$

$$
\begin{aligned}
& \mathcal{A}_{G-G-\mathbb{Z}_{N}} \propto\left[\sum_{\mathrm{f}} q_{f}\left(\mathbb{Z}_{N}\right) \ell(r(\mathrm{f}))\right] \bmod \eta \\
& \mathcal{A}_{U(1)_{A}-U(1)_{B}-\mathbb{Z}_{N}} \propto\left[\sum_{\mathrm{f}} q_{f}^{A} q_{f}^{B} q_{f}\left(\mathbb{Z}_{N}\right)\right] \bmod \eta \\
& \mathcal{A}_{\text {grav-grav }-\mathbb{Z}_{N}} \propto\left[\sum_{\mathrm{f}} q_{f}\left(\mathbb{Z}_{N}\right)\right] \bmod \eta \\
& \eta= \begin{cases}\frac{N}{2} & \text { if } N \text { is even } \\
N & \text { if } N \text { is odd }\end{cases}
\end{aligned}
$$

Green-Schwarz mechanism

Anomalies can be cancelled via the Green-Schwarz mechanism. This requires
(1) Factorization of anomaly polynomial:

$$
I_{D+2}=X_{k} Y_{D+2-k}
$$

(2) ($k-2$)-form field B_{k-2} with gauge trafo:

$$
\delta B_{k-2}=-X_{k-2}\left(\text { descent of } X_{k}\right)
$$

(3) Coupling to Y_{D+2-k} :

$$
S_{\mathrm{GS}}=\int \frac{1}{2}\left|\mathrm{~d} B_{k-2}+X_{k-1}\right|^{2}+B_{k-2} Y_{D+2-k}
$$

Note

Exchanging $Y_{D+2-k} \leftrightarrow X_{k-2}$ corresponds to $B_{k-2} \leftrightarrow \widetilde{B}_{D-k}$

Green-Schwarz mechanism

Anomalies can be cancelled via the Green-Schwarz mechanism. This requires
(1) Factorization of anomaly polynomial:

$$
I_{D+2}=X_{k} Y_{D+2-k}
$$

(2) ($k-2$)-form field B_{k-2} with gauge trafo:

$$
\delta B_{k-2}=-X_{k-2}\left(\text { descent of } X_{k}\right)
$$

(3) Coupling to Y_{D+2-k} :

$$
S_{\mathrm{GS}}=\int \frac{1}{2}\left|\mathrm{~d} B_{k-2}+X_{k-1}\right|^{2}+B_{k-2} Y_{D+2-k}
$$

Note

Exchanging $Y_{D+2-k} \leftrightarrow X_{k-2}$ corresponds to $B_{k-2} \leftrightarrow \widetilde{B}_{D-k}$
Additional contribution from B field

Green-Schwarz mechanism in 4D

GS mechanism in 4D (i.e. $D=4, k=2$) with 1 anomalous $U(1)_{A}$:
(1) Factorization: $I_{6}=X_{4} Y_{2}$ where

- $Y_{2}=\mathrm{d} A_{A}$ is the field strength of $U(1)_{A}$
- $X_{4}=\mathcal{A}_{\text {grav }- \text { grav }-U(1)_{A}} \operatorname{tr} R^{2}+\sum_{i} \mathcal{A}_{G_{i}-G_{i}-U(1)_{A}} \operatorname{tr} F_{i}^{2}$
(2) 0-form field (axion) a with gauge trafo:
$\delta_{\lambda} a=-\lambda$
(3) Coupling to X_{4} :
$S_{G S}=\int \frac{1}{2}\left|\mathrm{~d} a+Y_{1}\right|^{2}+a X_{4}=\int \frac{1}{2}\left|\mathrm{~d} a+A_{A}\right|^{2}+a X_{4}$

Consequences

- Anomalies are cancelled
- Axionic coupling gives Stückelberg mass to $U(1)_{A}$
- Axion in 4 D is dual to 2 -form field B_{2} (in the sense that $\left.* H_{3}=H_{1}\right) \rightarrow$ use later

Part II

GS mechanism in String Theory

Green-Schwarz mechanism in top-down approach

The introduction of GS axions might seem ad hoc, but is automatically implemented in string theory.

- Start with 10D (heterotic) SUGRA
- Factorize anomaly polynomial $I_{12}=X_{4}^{10 \mathrm{D}} X_{8}^{10 \mathrm{D}}$

$$
X_{4}^{10 \mathrm{D}}=\operatorname{tr} \Re^{2}-\operatorname{tr} \mathfrak{F}_{1}^{2}-\operatorname{tr} \mathfrak{F}_{2}^{2}
$$

- Cancel anomaly with $\delta \mathfrak{B}_{2}$ which is the descent of $X_{4}^{10 \mathrm{D}}$
- For dimensional reduction, decompose 10D 2-forms
- $\mathfrak{B} \rightarrow B+\mathcal{B}$
- $\mathfrak{R} \rightarrow R+\mathcal{R}$
- $\mathfrak{F}_{i} \rightarrow F_{i}+\mathcal{F}_{i}$
- Integrate out internal space (Orbifold/smooth CY) to obtain I_{6} in 4D SUGRA
- 4D Anomalies cancelled by B_{2} and \mathcal{B}_{2}

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{\sigma}} \int_{X}\{ & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

General remarks:

- \mathcal{F}, \mathcal{R} : internal (6D), F, R : external (4D)
- F Abelian
- $\mathcal{F}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \in E_{8} \otimes E_{8}$

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{\circ}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

$1^{\text {st }}$ term:

- $\operatorname{tr}[\mathcal{F F}]$ projects onto Abelian part of F with $\mathcal{F} \nVdash F$
- Generically $\operatorname{tr}[\mathcal{F} F]=0 \Leftrightarrow \mathcal{F} \perp F \Leftrightarrow I_{6}=0$
- Anomalies: $U(1)_{A} \times U(1)_{A}^{\prime} \times U(1)_{A}^{\prime \prime}, \quad U(1)_{A}^{2} \times U(1)_{A}^{\prime}, U(1)_{A}^{3}$

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{6}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

$2^{\text {nd }}$ term:

- $\operatorname{tr}[\mathcal{F} F]$ projects onto Abelian part of F with $\mathcal{F} \nVdash F$
- From $\operatorname{tr} F^{2}$, we get Abelian and non-Abelian anomalies
- Anomalies: $U(1)_{A} \times G \times G, G=U(1), U(1)_{A}, S U(N), S O(N), \ldots$

$$
\begin{aligned}
I_{6}=\frac{1}{(2 \pi)^{6}} \int_{X} & \left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F_{1}^{2}\right. \\
& \left.-\frac{1}{16}\left(\operatorname{tr} \mathcal{F}_{1}^{2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}_{1} F_{1}\right]+(1 \rightarrow 2)
\end{aligned}
$$

grav

grav

$3^{\text {rd }}$ term:

- $\operatorname{tr}[\mathcal{F F}]$ projects onto Abelian part of F with $\mathcal{F} \nVdash F$
- From $\operatorname{tr} R^{2}$, we get gravity anomalies
- Anomalies: $U(1)_{A} \times$ grav \times grav

\ldots Orbifold	Calabi-Yau
Geometry given by quotient of T^{6} by discrete \mathbb{Z}_{N} group	Geometry given by topologi- cal data like divisors, Intersection numbers,...

$\ldots \quad$ Orbifold	Calabi-Yau
Geometry given by quotient of T^{6} by discrete \mathbb{Z}_{N} group	Geometry given by topologi- cal data like divisors, Intersection numbers,...
Gauge sector described by Orbi- fold shift and Wilson lines	Gauge sector describe by stable vector bundle

Orbifold	Calabi-Yau
Geometry given by quotient of T^{6} by discrete \mathbb{Z}_{N} group	Geometry given by topologi- cal data like divisors, Intersection numbers,...
Gauge sector described by Orbi- fold shift and Wilson lines	Gauge sector describe by stable vector bundle
Impose modular invariance for consistency	Impose Bianchi Identities and DUY equations for consistency

Heterotic Compactification Spaces

Orbifold

Geometry given by quotient of T^{6} by discrete \mathbb{Z}_{N} group

Calabi-Yau

Geometry given by topological data like divisors, Intersection numbers,. . .

Gauge sector describe by stable vector bundle

Impose Bianchi Identities and DUY equations for consistency
only SUGRA approximation

Procedure

Start at Orbifold and extrapolate to CY regime

Construction mechanism:

- Start with \mathbb{R}^{2} plane
- Divide out torus lattice Γ_{T}
- Divide out orbifold action

Construction mechanism:

- Start with \mathbb{R}^{2} plane
- Divide out torus lattice Γ_{T}
- Divide out orbifold action

Kinds of Strings:

Untwisted strings

Construction mechanism:

- Start with \mathbb{R}^{2} plane
- Divide out torus lattice Γ_{T}
- Divide out orbifold action

Kinds of Strings:

Twisted strings

Construction mechanism:

- Start with \mathbb{R}^{2} plane
- Divide out torus lattice Γ_{T}
- Divide out orbifold action

Kinds of Strings:

Massive strings

Heterotic Compactification Spaces - Orbifolds

Anomaly cancellation on Orbifolds:

On orbifolds, there is a unique Kalb-Ramond field B_{2} (with dual axion a), thus

- all anomalies are proportional such that the same axionic coupling can cancel all at once
- at most 1 anomalous $U(1)$ for suitable choice of $U(1)$ basis
- GS anomaly cancellation ensured by modular invariance conditions

[^0]
Heterotic Compactification Spaces - Orbifolds

Consequences: [Lee,Raby,Ratz,Ross,Schieren,Schmidt-Hoberg, Vaudrevange]

- Anomalies ok as long as all are proportional
- There is a unique \mathbb{Z}_{4}^{R} symmetry that
- assumes family universality
- works after doublet-triplet splitting
- is compatible with $S O(10)$ GUT
- forbids dim 4 and 5 proton decay operators
- forbids the μ term
- Realized in string theory in a $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold construction [Blaszczyk, Groot Nibbelink, Ratz,FR,Trapletti, Vaudrevange]

Summary

- On orbifolds all anomalies are universal
- very constrained choice for discrete symmetries

Construction mechanism:

- Start with Orbifold
- Cut out singularitites
- Glue in compact smooth surfaces
- Describe via Gauged Linear Sigma Models (GLSMs) [Witten]

Construction mechanism:

- Start with Orbifold
- Cut out singularitites
- Glue in compact smooth surfaces
- Describe via Gauged Linear Sigma Models (GLSMs) [Witten]

Terminology:

- Divisors $\widehat{=}$ Codimension 1 hypersurfaces $\Leftrightarrow(1,1)$ forms
- Inherited Divisors $\widehat{=}$ Torus away from singularitites
- Exceptional Divisors $\widehat{=}$ Smooth surfaces glued into the orbifold singularitites

Anomaly cancellation in Blowup:
In blowup, there are 4D axions arising from both B_{2} and \mathcal{B}_{2}, thus:

- anomalies are non-universal
- as many anomalous $U(1)$'s as rank of line bundle
- Absence of non-Abelian anomalies ensured by Bianchi identities [Witten]

Anomaly cancellation in Blowup:
In blowup, there are 4D axions arising from both B_{2} and \mathcal{B}_{2}, thus:

- anomalies are non-universal
- as many anomalous $U(1)$'s as rank of line bundle
- Absence of non-Abelian anomalies ensured by Bianchi identities [Witten]

Connection between blowup with line bundles and orbifold:

- Blowup modes \leftrightarrow twisted orbifold states
- Kähler parameters \leftrightarrow vev (real part) of blowup modes
- Axions in $\mathcal{B}_{2} \leftrightarrow$ phases of blowup modes
- $E_{8} \times E_{8}$ weights \leftrightarrow Orbifold matter states

Using this correspondence and the non-triviality of the anomaly polynomial, the orbifold spectrum can be matched completely with the blowup spectrum [Nibeelin,,Nilles, Trapletti; Blaszczyk, Cabo Bizet, Nilles, FR]

Part III

Example: The T^{6} / \mathbb{Z}_{3} Orbifold and its resolution

Orbifold

Compactify on 6D Lie root lattice $S U(3)^{3}$ and divide out orbifold \mathbb{Z}_{3} action θ :

$$
\theta:\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(e^{2 \pi i / 3} z_{1}, e^{2 \pi i / 3} z_{2}, e^{-2 \pi i 2 / 3} z_{3}\right)
$$

- Orbifold action given by twist vector $v=\frac{1}{3}(1,1,-2)$
- Modular invariance requires a shift V in the $E_{8} \times E_{8}$ gauge sector s.t. $3\left(V^{2}-v^{2}\right)=0 \bmod 2$
- Choose Standard embedding $V=\frac{1}{3}\left(1,1,-2,0^{5}\right)\left(0^{8}\right) "=v^{\prime \prime}$

Gauge group: $\quad\left[E_{6} \times S U(3)\right]_{\text {vis }} \times\left[E_{8}\right]_{\text {hid }}$ Matter: $3(\mathbf{2 7}, \overline{\mathbf{3}} ; \mathbf{1})+27[(\mathbf{2 7}, \mathbf{1} ; \mathbf{1})+3(\mathbf{1}, \mathbf{3} ; \mathbf{1})]$

Consistency requirements

Want to construct smooth CY with line bundles from orbifold using toric (algebraic) geometry. Impose

- Bianchi identity (ensures absence of purely non-Abelian anomalies [Witten]):

$$
H=d B+\omega_{Y M}-\omega_{L} \rightarrow \int_{\mathcal{C}_{4}} d H=\int_{\mathcal{C}_{4}} \operatorname{tr} \mathcal{F}^{2}-\operatorname{tr} \mathcal{R}^{2} \stackrel{!}{=} 0
$$

- Donaldson-Uhlenbeck-Yau (ensures 4d $\mathcal{N}=1$ SUSY)

$$
\int_{X} J \wedge J \wedge \mathcal{F}=0
$$

In order to solve these equations, need divisors \mathcal{C}_{4} and their intersection numbers

Toric description of T^{6} / \mathbb{Z}^{3}

Analytic Description of T^{2}

- Introduce complex coordinate $u \in \mathbb{C} / \Gamma_{T}$
- Torus described by double-periodic function $\wp(u)$ with $\wp(u+1)=\wp(u+\tau)=\wp(u)$

Toric description of T^{6} / \mathbb{Z}^{3}

Analytic Description of T^{2}

- Introduce complex coordinate $u \in \mathbb{C} / \Gamma_{T}$
- Torus described by double-periodic function $\wp(u)$ with

$$
\wp(u+1)=\wp(u+\tau)=\wp(u)
$$

Algebraic Description of T^{2}

- Introduce 3 homogeneous coordinates z_{1}, z_{2}, z_{3} in \mathbb{P}^{2}
- Impose cubic equation $z_{1}^{3}+z_{2}^{3}+z_{3}^{3}+t z_{1} z_{2} z_{3}=0$
- Impose condition on absolute values $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=a$
- t corresponds to CS, a to Kähler parameter of the torus

$$
u \in \mathbb{C} / \Gamma_{T}
$$

$z_{1}, z_{2}, z_{3} \in \mathbb{C}$

One finds that for $\tau=e^{2 \pi i / 3} \Rightarrow t=0$

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

| $U(1) ' s$ | z_{11} | z_{12} | z_{13} | z_{21} | z_{22} | z_{23} | z_{31} | z_{32} | z_{33} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R_{1} | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| R_{2} | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| R_{3} | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

$$
\begin{gathered}
\sum_{\rho=1}^{3} z_{i \rho}^{3}=0, \quad i=1,2,3 \\
\sum_{\rho=1}^{3}\left|z_{i \rho}\right|^{2}=a_{i}, \quad i=1,2,3
\end{gathered}
$$

- Introduce 3 times $3 z$'s to descibe the three T^{2}
- Divide by orbifold \mathbb{Z}_{3}
- Resolve fixed points by introducing 27 x's that resolve the FPs by gluing in $27 \mathbb{P}^{2}$ at the singularities
[Blaszczyk, Groot Nibbelink, FR]

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

$U(1) ' s$	z_{11}	z_{12}	z_{13}	z_{21}	z_{22}	z_{23}	z_{31}	z_{32}	z_{33}	x_{111}	\ldots	x_{333}
R_{1}	1	1	1	0	0	0	0	0	0	0	0	0
R_{2}	0	0	0	1	1	1	0	0	0	0	0	0
R_{3}	0	0	0	0	0	0	1	1	1	0	0	0
E_{111}	1	0	0	1	0	0	1	0	0	-3	0	0
\vdots		\ddots			\ddots			\ddots			\ddots	
E_{333}	0	0	1	0	0	1	0	0	1	0	0	-3

$$
\begin{gathered}
\sum_{\rho=1}^{3} z_{1 \rho}^{3} \prod_{\beta, \gamma=1}^{3} x_{\rho \beta \gamma}=0, \sum_{\rho=1}^{3} z_{2 \rho}^{3} \prod_{\alpha, \gamma=1}^{3} x_{\alpha \rho \gamma}=0, \sum_{\rho=1}^{3} z_{3 \rho}^{3} \prod_{\alpha, \beta=1}^{3} x_{\alpha \beta \rho}=0 \\
\sum_{\rho=1}^{3}\left|z_{i \rho}\right|^{2}=a_{i}, \\
i=1,2,3 \\
\sum_{\rho=1}^{3}\left|z_{i \rho}\right|^{2}-3\left|x_{\alpha \beta \gamma}\right|=b_{\alpha \beta \gamma},
\end{gathered} \alpha, \beta, \gamma=1,2,3
$$

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

- Introduce exceptional divisors $E_{\alpha \beta \gamma}$ at $x_{\alpha \beta \gamma}=0$
- Introduce gauge flux $\mathcal{F}=E_{\alpha \beta \gamma} V_{\alpha \beta \gamma}^{\prime} H_{l}$
- The H_{I} are the 16 Cartan generators of $E_{8} \times E_{8}$
- The 16×27 matrix $V_{\alpha \beta \gamma}^{\prime}$ describes the gauge line bundle at the 27 fixed points
- Note that in the orbifold limit the $E_{\alpha \beta \gamma}$ are shrunk to a point \Rightarrow flux is located at fixed points
- Introduce exceptional divisors $E_{\alpha \beta \gamma}$ at $x_{\alpha \beta \gamma}=0$
- Introduce gauge flux $\mathcal{F}=E_{\alpha \beta \gamma} V_{\alpha \beta \gamma}^{\prime} H_{l}$
- The H_{l} are the 16 Cartan generators of $E_{8} \times E_{8}$
- The 16×27 matrix $V_{\alpha \beta \gamma}^{\prime}$ describes the gauge line bundle at the 27 fixed points
- Note that in the orbifold limit the $E_{\alpha \beta \gamma}$ are shrunk to a point \Rightarrow flux is located at fixed points

To make contact with the orbifold description:

- Choose the $V_{\alpha \beta \gamma}$ to coincide with the internal $E_{8} \times E_{8}$ momentum of some twisted orbifold state located at (α, β, γ)
- Vev of orbifold state generates the blowup of the $E_{\alpha \beta \gamma}$

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

Field redefinitions:

$$
\begin{aligned}
\Phi_{\alpha \beta \gamma}^{\mathrm{BU}-\text { Mode }} & =e^{b_{\alpha \beta \gamma}+i \beta_{\alpha \beta \gamma}} \\
\Phi_{\alpha \beta \gamma}^{\mathrm{CY}} & =e^{-b_{\alpha \beta \gamma}-i \beta_{\alpha \beta \gamma} \Phi_{\alpha \beta \gamma}^{\mathrm{Orb}} \quad \Rightarrow \quad Q^{\mathrm{CY}}=Q^{\mathrm{Orb}}+V_{\alpha \beta \gamma}}
\end{aligned}
$$

Note:

- Kähler parameters $b_{\alpha \beta \gamma} \propto \operatorname{vol}\left(E_{\alpha \beta \gamma}\right)$
- $b_{\alpha \beta \gamma} \rightarrow \infty$: Blowup limit
- $b_{\alpha \beta \gamma} \ll 0$: Orbifold limit
[Aspinwall, Greene,Morrison]
- Kalb-Ramond 2-form $\mathfrak{B}_{2}=B_{2}+\beta_{\alpha \beta \gamma} E_{\alpha \beta \gamma}$
- Axions $\beta_{\alpha \beta \gamma} \rightarrow \beta_{\alpha \beta \gamma}+\lambda_{I} V_{\alpha \beta \gamma}^{\prime}$
- Gauge bundle is sum of line bundles
- Gauge group rank not reduced by bundle
- $U(1)$'s in direction of line bundle anomalous
- Anomaly cancelled by axions β, but $U(1)$'s massive

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

Choose 3 different bundle vectors from (27, $\mathbf{1}$) of $E_{6} \times S U(3)$

- $V_{1}=\frac{1}{3}\left(2,2,2,0^{5}\right)\left(0^{8}\right)$ at k fixed points
- $V_{2}=\frac{1}{3}\left(-1,-1,-1,3,0^{4}\right)\left(0^{8}\right)$ at p fixed points
- $V_{3}=-\left(V_{1}+V_{2}\right)$ at $q \equiv 27-p-q$ fixed points
$\Rightarrow \mathcal{F}=\sum_{i=1}^{k} E_{i} V_{1}^{\prime} H_{l}+\sum_{j=k+1}^{k+p} E_{j} V_{2}^{\prime} H_{l}+\sum_{n=k+p+1}^{27} E_{n} V_{3}^{\prime} H_{l}$

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

Choose 3 different bundle vectors from $(27,1)$ of $E_{6} \times S U(3)$

- $V_{1}=\frac{1}{3}\left(2,2,2,0^{5}\right)\left(0^{8}\right)$ at k fixed points
- $V_{2}=\frac{1}{3}\left(-1,-1,-1,3,0^{4}\right)\left(0^{8}\right)$ at p fixed points
- $V_{3}=-\left(V_{1}+V_{2}\right)$ at $q \equiv 27-p-q$ fixed points

$$
\Rightarrow \mathcal{F}=\sum_{i=1}^{k} E_{i} V_{1}^{\prime} H_{l}+\sum_{j=k+1}^{k+p} E_{j} V_{2}^{\prime} H_{l}+\sum_{n=k+p+1}^{27} E_{n} V_{3}^{\prime} H_{l}
$$

Check consistency conditions:
Bianchi Identities

$$
\int_{E_{\alpha \beta \gamma}} \operatorname{tr} \mathcal{F}^{2}=\int_{E_{\alpha \beta \gamma}} \operatorname{tr} \mathcal{R}^{2} \Rightarrow V_{1}^{2}=V_{2}^{2}=V_{3}^{2}=\frac{4}{3}
$$

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

Choose 3 different bundle vectors from $(27,1)$ of $E_{6} \times S U(3)$

- $V_{1}=\frac{1}{3}\left(2,2,2,0^{5}\right)\left(0^{8}\right)$ at k fixed points
- $V_{2}=\frac{1}{3}\left(-1,-1,-1,3,0^{4}\right)\left(0^{8}\right)$ at p fixed points
- $V_{3}=-\left(V_{1}+V_{2}\right)$ at $q \equiv 27-p-q$ fixed points

$$
\Rightarrow \mathcal{F}=\sum_{i=1}^{k} E_{i} V_{1}^{\prime} H_{l}+\sum_{j=k+1}^{k+p} E_{j} V_{2}^{\prime} H_{l}+\sum_{n=k+p+1}^{27} E_{n} V_{3}^{\prime} H_{l}
$$

Check consistency conditions:
Bianchi Identities

$$
\int_{E_{\alpha \beta \gamma}} \operatorname{tr} \mathcal{F}^{2}=\int_{E_{\alpha \beta \gamma}} \operatorname{tr} \mathcal{R}^{2} \Rightarrow V_{1}^{2}=V_{2}^{2}=V_{3}^{2}=\frac{4}{3}
$$

DUY equations

$$
\begin{aligned}
& \int J \wedge J \wedge \mathcal{F}=0 \Rightarrow \sum_{\alpha \beta \gamma} V_{\alpha \beta \gamma}^{\prime} \operatorname{vol}\left(E_{\alpha \beta \gamma}\right)=0 \quad \forall I \\
& \sum_{i=1}^{k} V_{1} \operatorname{vol}\left(E_{i}\right)+\sum_{j=k+1}^{k+p} V_{2} \operatorname{vol}\left(E_{j}\right)+\sum_{n=k+p+1}^{27} V_{3} \operatorname{vol}\left(E_{n}\right)=0
\end{aligned}
$$

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

The gauge bundle breaks $E_{6} \rightarrow S O(8) \times U(1)_{A} \times U(1)_{B}$:
$27 \rightarrow 8_{s(1,-1)}+8_{c(1,1)}+8_{v(-2,0)}+\mathbf{1}_{(-2,-2)}+\mathbf{1}_{(-2,2)}+\mathbf{1}_{(4,0)}$

Resolution of T^{6} / \mathbb{Z}^{3} with line bundles

The gauge bundle breaks $E_{6} \rightarrow S O(8) \times U(1)_{A} \times U(1)_{B}$: $27 \rightarrow 8_{s(1,-1)}+8_{c(1,1)}+8_{v(-2,0)}+\mathbf{1}_{(-2,-2)}+\mathbf{1}_{(-2,2)}+\mathbf{1}_{(4,0)}$

Calculate anomaly polynomial $I_{6}=\int_{X} I_{12}$ in background:

$$
\begin{aligned}
I_{6} \sim & F_{A}^{3}\left(\frac{k-6}{12}\right)+F_{A} F_{B}^{2}\left(\frac{k-18}{4}\right) \\
& +F_{A}\left[\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}\right]\left(\frac{k-9}{2}\right) \\
& +F_{B}\left[\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(8)}^{2}+\frac{7}{48} \operatorname{tr} R^{2}+\frac{1}{48} F_{A}^{2}+\frac{1}{8} F_{B}^{2}\right]\left(\frac{p-q}{2}\right)
\end{aligned}
$$

- $U(1)_{A}$ always anomalous, $U(1)_{B}$ non-anomalous iff $p=q$
- Remnant anomaly universality from orbifold:
- Coefficients of non-Abelian anomaly from same E_{8} prop.
- Coefficients of of non-Abelian and of grav. anomaly prop.

Axionic shifts and massive $U(1)$'s

Axions $\beta_{\alpha \beta \gamma}$ shift under $U(1)_{A}$ and $U(1)_{B}$
\Rightarrow In general both $U(1)$'s massive, even if not anomalous:

$$
S \subset \int_{X} H_{3} \wedge * H_{3}=A_{\mu}^{l} A_{I}^{\mu} M_{I J}+\ldots, \quad M_{I J}=V_{r}^{\prime} V_{s}^{J} \int_{X} E_{r} *_{6} E_{s}
$$

Mass matrix $M_{I J}$ is positive definite, of rank 2, and depends on the Kähler parameters.

Note

Stückelberg mass possible without an anomalous $U(1)$
\rightarrow rank reduction from line bundles

Part IV

Remnant discrete symmetries

Non- R symmetries arise as discrete subgroups of $U(1)_{A}$ and $U(1)_{B}$ which leave vevs of blowup modes invariant $27 \rightarrow \boldsymbol{8}_{s(1,-1)}+\mathbf{8}_{c(1,1)}+\mathbf{8}_{v(-2,0)}+\mathbf{1}_{(-2,-2)}+\mathbf{1}_{(-2,2)}+\mathbf{1}_{(4,0)}$

Blowup modes:
$\mathbf{1}_{(-2,-2)}, \mathbf{1}_{(-2,2)}, \mathbf{1}_{(4,0)}$ corresponding to V_{1}, V_{2}, V_{3}

Leave discrete $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry generated by

$$
T_{ \pm}: \quad \phi_{\left(q_{a}, q_{b}\right)} \rightarrow e^{\frac{2 \pi i}{2}\left(q_{A} \pm q_{B}\right)} \phi_{\left(q_{A}, q_{B}\right)}
$$

Both symmetries are non-anomalous

Remnant R symmetries

Properties of R symmetries

- R symmetries do not commute with SUSY
- Grassmann coordinate θ transforms under R-symmetries
- R symmetries only defined up to mixing with non- R symmetries
- Usual choice of normalization: θ has charge $1 \rightarrow$ Superpotential has charge 2

Remnant R symmetries

Properties of R symmetries

- R symmetries do not commute with SUSY
- Grassmann coordinate θ transforms under R-symmetries
- R symmetries only defined up to mixing with non- R symmetries
- Usual choice of normalization: θ has charge $1 \rightarrow$ Superpotential has charge 2

Origin of R-symmetries

- Lorentz symmetry of internal compactification space treat bosons and fermions differently \rightarrow can give rise to R symmetries in 4D
- Orbifolds are special points in moduli space of enhanced symmetry \rightarrow expect more R symmetries than on generic CY

Remnant R symmetries - Orbifold

R-charge on the orbifold defined via a combination of right-moving momenta q and oscillator numbers ΔN :
$R=q-\Delta N$ with $q=\frac{1}{3}(1,1,1)$ [Kobayashi, Raby,Zhang]
Remnant symmetry of internal space: Sublattice rotations by $2 \pi / 3$ in each T^{2} :

$$
T_{k}^{R}: \phi \rightarrow e^{2 \pi i / 3 R_{k}} \phi
$$

Order of the symmetry:

- For bosons, $R_{k} \in \frac{1}{3} \mathbb{Z} \Rightarrow \mathbb{Z}_{9} R$-symmetry
- For fermions, $R^{f}=R-\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, i.e. θ has charge $\frac{1}{6} \Rightarrow \mathbb{Z}_{6}^{R}$ symmetry

Summary of conventions

Choose $\operatorname{Icm}(9,6)=18 \Rightarrow \mathbb{Z}_{18} R$-symmetry where all fields have integer charges: (bosons,fermions, $\theta)=\frac{1}{18}(2 n, 2 n-3,3)$

Remnant R symmetries - Orbifold

Our orbifold blowup modes have

$$
R=q-\Delta N=\frac{1}{3}(1,1,1)
$$

To identify remnant R-symmetries, search for invariant combinations of T_{k}^{R} with $T_{U(1)_{A}}$ and $T_{U(1)_{B}}$:

$$
\begin{aligned}
\mathbf{1}_{(-2,-2)} & \rightarrow\left(T_{1}^{R}\right)^{a}\left(T_{2}^{R}\right)^{b}\left(T_{3}^{R}\right)^{c} T_{U(1)_{A}} T_{U(1)_{B}} \mathbf{1}_{(-2,-2)} \stackrel{!}{=} \mathbf{1}_{(-2,-2)} \\
\mathbf{1}_{(-2,2)} & \rightarrow\left(T_{1}^{R}\right)^{a}\left(T_{2}^{R}\right)^{b}\left(T_{3}^{R}\right)^{c} T_{U(1)_{A}} T_{U(1)_{B}} \mathbf{1}_{(-2,2)} \stackrel{!}{=} \mathbf{1}_{(-2,2)} \\
\mathbf{1}_{(4,0)} & \rightarrow\left(T_{1}^{R}\right)^{a}\left(T_{2}^{R}\right)^{b}\left(T_{3}^{R}\right)^{c} T_{U(1)_{A}} T_{U(1)_{B}} \mathbf{1}_{(4,0)} \stackrel{!}{=} \mathbf{1}_{(4,0)}
\end{aligned}
$$

Result

One finds that $a+b+c=3 \Rightarrow$ only a (trivial) $\mathbb{Z}_{2} R$-symmetry remains in blowup.

Remnant R symmetries - GLSM

Look at simplified model with 3 exceptional divisors:

$$
\begin{aligned}
0 & =z_{11}^{3} x_{1}+z_{12}^{3} x_{2}+z_{13}^{3} x_{3} \\
0 & =z_{21}^{3} x_{1} x_{2} x_{3}+z_{22}^{3}+z_{23}^{3} \\
0 & =z_{31}^{3} x_{1} x_{2} x_{3}+z_{32}^{3}+z_{33}^{3} \\
a_{i} & =\left|z_{i 1}\right|^{2}+\left|z_{i 2}\right|^{2}+\left|z_{i 3}\right|^{2} \\
b_{\alpha} & =\left|z_{1 \alpha}\right|^{2}+\left|z_{21}\right|^{2}+\left|z_{31}\right|^{2}-3\left|x_{\alpha}\right|^{2}
\end{aligned}
$$

Symmetries:

- $z_{i \alpha} \rightarrow e^{2 \pi i / 3} z_{i \alpha}$
- $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow e^{2 \pi i / 3}\left(x_{1}, x_{2}, x_{3}\right)$
- ...

Origin of Symmetries

Note that the symmetries are inherited from the special choice of complex structure on the orbifold (absence of $t z_{i 1} z_{i 2} z_{i 3}$ term)

Remnant R symmetries - GLSM

How to check which of these symmetries are R-symmetries?
R-symmetries will transform the holomorphic $(3,0)$ form Ω :
$\Omega \sim \eta \Gamma \eta d z^{i} d z^{j} d z^{k} \quad \Rightarrow \quad Q_{R}(\Omega)=Q_{R}(W) \quad[$ Witten]

Remnant R symmetries - GLSM

How to check which of these symmetries are R-symmetries?
R-symmetries will transform the holomorphic $(3,0)$ form Ω :
$\Omega \sim \eta\left\lceil\eta d z^{i} d z^{j} d z^{k}\right.$
$\Rightarrow \quad Q_{R}(\Omega)=Q_{R}(W)$
[Witten]

How are the R-symmetries broken in blowup?
(Presumably) via marginal deformations in Kähler potential under the presence of the gauge bundle:

$$
\int d^{2} \theta^{+} \phi_{4 D}\left(x^{\mu}\right) N(z, x) \wedge \bar{\Lambda}
$$

- $\phi_{4 D}: 4 \mathrm{D}$ modes
- $N(z, x)$: Polynomial in the geometry fields $z_{i \alpha}, x_{\alpha}$
- \wedge : WS fermions describing the gauge bundle
$N(z, x)$ might not be compatible with rotational symmetries $\Rightarrow R$-symmetry broken

Remnant R symmetries - GLSM

To check transformation of bundle under discrete symmetries:

- Find discrete transformations of coordinate fields z, x under symmetry in question
- Write down gauge bundle in ambient space
- Restrict bundle to toric hypersurface via Koszul sequence
- Find contributing monomials
- Check transformation of monomials under discrete symmetry

Tools

The last three steps should be automatized using cohomcalg [Jurke] and the Koszul extension [Rahn].

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Conclusion

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Discussion of anomalies and GS cancellation mechanism

- in 4D with axions arising from factorized I_{6}
- in 10D with factorized I_{12}

Conclusion

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Discussion of anomalies and GS cancellation mechanism

- in 4D with axions arising from factorized I_{6}
- in 10D with factorized I_{12}

Embedding in String Theory:

- Orbifold: One universal axion \Rightarrow Anomalies universal
- Blowup CY: Several axions \Rightarrow Anomalies not universal

Conclusion

Origin of discrete symmetries:

- Non- R symmetries are discrete remnants of higgsed $U(1)$'s
- R symmetries are discrete remnants of internal Lorentz trafos

Calculation of discrete symmetries:

- Non- R symmetries can be calculated from spectrum
- R symmetries can be calculated from GLSM

Thank you for your attention!

[^0]: Anomaly universality
 Coupling a $X_{4} \rightarrow \mathcal{A}_{\text {grav-grav- } U(1)} \sim \mathcal{A}_{\mathrm{G}-\mathrm{G}-U(1)} \sim \mathcal{A}_{U(1)_{A}-U(1)_{B}-U(1)_{C}}$

