Anomalies and Discrete Symmetries in Heterotic String Constructions

Fabian Rühle

Bethe Center for Theoretical Physics Bonn University

Northeastern University - 07/16/2012

Benn-Colegne Graduate School of Physics and Astronomy

Based on:

[Lüdeling,FR,Wieck: 1203.5789], [Blaszczyk,Groot Nibbelink,FR: 1111.5852],

[Blaszczyk,Cabo Bizet,Nilles,FR: 1108.0667]

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate

• • • •

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

But it also has problems

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ -term

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

But it also has problems

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ -term
- \Rightarrow Introduce symmetries that suppress/forbid the terms

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

But it also has problems

• Introduces dimension four and five proton decay operators

- Needs explanation for smallness of μ -term
- \Rightarrow Introduce symmetries that suppress/forbid the terms
- Lacks UV completion

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

But it also has problems

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ -term
- \Rightarrow Introduce symmetries that suppress/forbid the terms
- Lacks UV completion
- \Rightarrow Embed in UV complete theory like String Theory

In the past, many discrete symmetries proposed to forbid bad terms

$$\begin{split} \mathcal{W}_{\mathsf{bad}} \supset & \mu H_u H_d + L H \\ & + L Q d^c + Q d^c d^c + L L e^c \\ & + Q Q Q L + u^c u^c d^c e^c + \dots \end{split}$$

In the past, many discrete symmetries proposed to forbid bad terms

• **Z**₂ **Matter Parity** [Farrar, Fayet; Dimopoulos, Raby, Wilczek]

In the past, many discrete symmetries proposed to forbid bad terms

$$W_{bad} \supset \mu H_u H_d + LH + LQd^c + Qd^c d^c + LLe^c + QQQL + u^c d^c d^c + \dots$$

- **Z**₂ **Matter Parity** [Farrar, Fayet; Dimopoulos, Raby, Wilczek]
- Z₃ Baryon triality [Ibanez,Ross]

In the past, many discrete symmetries proposed to forbid bad terms

- **Z**₂ **Matter Parity** [Farrar, Fayet; Dimopoulos, Raby, Wilczek]
- Z₃ Baryon triality [Ibanez,Ross]
- Z₆ anomaly-free proton hexality [Babu,Gogoladze,Wang; Dreiner,Luhn,Thormeier]

In the past, many discrete symmetries proposed to forbid bad terms

$$W_{bad} \supset \overrightarrow{\mu} \overrightarrow{\mu} \overrightarrow{d}_d + \overrightarrow{\mu} \overrightarrow{k} \\ + \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} + \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} + \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} \\ + \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} \overrightarrow{k} + u^{c} \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} \overrightarrow{k} + \dots$$

- **Z**₂ **Matter Parity** [Farrar, Fayet; Dimopoulos, Raby, Wilczek]
- Z₃ Baryon triality [Ibanez,Ross]
- Z₆ anomaly-free proton hexality [Babu,Gogoladze,Wang; Dreiner,Luhn,Thormeier]
- Z^R₄ anomaly-universal *R*-symmetry [Lee,Raby,Ratz,Ross,Schieren,Schmidt-Hoberg,Vaudrevange]

In the past, many discrete symmetries proposed to forbid bad terms

$$W_{bad} \supset \overrightarrow{\mu} \overrightarrow{\mu} \overrightarrow{d}_d + \overrightarrow{\mu} \overrightarrow{k} \\ + \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} + \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} + \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} \\ + \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} \overrightarrow{k} + u^{c} \overrightarrow{\mu} \overrightarrow{k} \overrightarrow{k} \overrightarrow{k} + \dots$$

- **Z**₂ **Matter Parity** [Farrar, Fayet; Dimopoulos, Raby, Wilczek]
- Z₃ Baryon triality [Ibanez,Ross]
- Z₆ anomaly-free proton hexality [Babu,Gogoladze,Wang; Dreiner,Luhn,Thormeier]
- Z^R₄ anomaly-universal *R*-symmetry [Lee,Raby,Ratz,Ross,Schieren,Schmidt-Hoberg,Vaudrevange]
- • •

Much effort spent on construction of **MSSM**-like models in last decade.

Much effort spent on construction of $\ensuremath{\mathsf{MSSM}}\xspace$ -like models in last decade.

Approaches in $E_8 \times E_8$ heterotic string theory:

- Orbifold model building [Blaszczyk, Buchmüller, Groot Nibbelink, Hamaguchi, Kim, Kyae, Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, FR, Trapletti, Vaudrevange, Wingerter, ...]
- Calabi-Yau model building [Anderson, Bouchard, Braun, Donagi, Gray, He, Lukas, Ovrut, Palti, Pantev, Waldram, ...]
- Free fermionic constructions [Faraggi, Nanopoulos, Yuan, ...]
- Gepner Models [Dijkstra, Gato-Rivera, Huiszoon, Schellekens, ...]

I will focus on the first two approaches.

Outline

- Definition and Description
- Green-Schwarz mechanism
- Ø Green–Schwarz mechanism in String Theory
 - Structure of anomaly polynomial
 - Introduction of Orbifolds/CYs
 - GS in orbifold compactifications
 - GS in smooth CY compactifications
- **3** Example: The T^6/\mathbb{Z}_3 orbifold and its resolution
 - Orbifold construction
 - Toric resolution of orbifold
- 4 Remnant discrete symmetries
 - Remnant non-R symmetries
 - Remnant *R* symmetries
 - Calculation of (non-) R symmetry charges

Part |

Anomalies

Definition of Anomaly

An **anomaly** is a symmetry of the classical theory which is broken by **quantum effects**. Gauge **anomalies** render theory inconsistent and have to be absent!

Properties of Anomalies

- Anomalies arise at 1-loop
- They are determined by the chiral spectrum
- Can be determined from variation of path integral measure [Fujikawa]
- Can be described in terms of anomaly polynomial

[Wess, Zumino; Stora; Alvarez-Gaume, Ginsparg]

Description of Anomalies - Path Integrals

From path integral:

• Look at trafo $\Psi \rightarrow \Psi'$ parameterized by trafo parameter λ :

$$\int \mathcal{D}\Psi e^{iS} \to \int \mathcal{D}\Psi' J(\lambda) e^{iS} \,, \quad J(\lambda) = e^{i\mathcal{A}} = e^{i\int d^D_X I_D}$$

• It is more convenient to work with anomaly polynomial I_{D+2}

$$\mathsf{d}I_D = \delta_\lambda I_{D+1} \quad \mathsf{d}I_{D+1} = I_{D+2}$$
 "Descent equations"

- Anomaly form I_D : linear in trafo parameter λ , polynomial in gauge connections and field strengths
- Chern Simons form *I*_{D+1}: poynomial in gauge connections and field strengths
- Anomaly polynomial I_{D+2}: closed and gauge invariant polynomial in the field strengths

Description of Anomalies - Feynman diagrams

From **Feynman diagram** (here D = 4):

Internal legs: Chiral fermions f
External legs: Gauge bosons / Gravity

• $\mathcal{A} = \mathcal{A}_{G-G-U(1)} + \mathcal{A}_{U(1)_A-U(1)_B-U(1)_C} + \mathcal{A}_{grav-grav-U(1)}$

$$\mathcal{A}_{G-G-U(1)} \propto \sum_{\mathrm{f}} q_f \, \ell(r(\mathrm{f}))$$
 $\mathcal{A}_{U(1)_A-U(1)_B-U(1)_C} \propto \sum_{\mathrm{f}} q_f^A q_f^B q_f^C$ $\mathcal{A}_{\mathrm{grav}-\mathrm{grav}-U(1)} \propto \sum_{\mathrm{f}} q_f$

Description of Anomalies - Discrete Anoamlies

Calculation of **discrete** \mathbb{Z}_N anomalies:

- Useful to think of $\mathbb{Z}_N \subset U(1)$
- Quadratic/cubic/mixed U(1)- \mathbb{Z}_N anomalies ill-defined [Banks, Seiberg]
- $\bullet \Rightarrow \mathsf{Anomalies} \ \mathcal{A}_{G-G-\mathbb{Z}_N} \ , \ \mathcal{A}_{U(1)_A-U(1)_B-\mathbb{Z}_N} \ , \ \mathcal{A}_{\mathsf{grav}-\mathsf{grav}-\mathbb{Z}_N}$

$$\mathcal{A}_{G-G-\mathbb{Z}_N} \propto \left[\sum_{f} q_f(\mathbb{Z}_N) \ell(r(f))\right] \mod \eta$$
$$\mathcal{A}_{U(1)_A-U(1)_B-\mathbb{Z}_N} \propto \left[\sum_{f} q_f^A q_f^B q_f(\mathbb{Z}_N)\right] \mod \eta$$
$$\mathcal{A}_{grav-grav-\mathbb{Z}_N} \propto \left[\sum_{f} q_f(\mathbb{Z}_N)\right] \mod \eta$$
$$\eta = \begin{cases} \frac{N}{2} & \text{if } N \text{ is even} \\ N & \text{if } N \text{ is odd} \end{cases}$$

Fabian Ruehle (BCTP Bonn)

Green-Schwarz mechanism

Anomalies can be cancelled via the Green-Schwarz mechanism. This requires

Factorization of anomaly polynomial:

$$I_{D+2} = X_k Y_{D+2-k}$$

• (k - 2)-form field B_{k-2} with gauge trafo: $\delta B_{k-2} = -X_{k-2}$ (descent of X_k)

3 Coupling to
$$Y_{D+2-k}$$
:
 $S_{GS} = \int \frac{1}{2} |dB_{k-2} + X_{k-1}|^2 + B_{k-2} Y_{D+2-k}$

Note

Exchanging $Y_{D+2-k} \leftrightarrow X_{k-2}$ corresponds to $B_{k-2} \leftrightarrow \widetilde{B}_{D-k}$

Green-Schwarz mechanism

Anomalies can be cancelled via the Green-Schwarz mechanism. This requires

Factorization of anomaly polynomial:

$$I_{D+2} = X_k Y_{D+2-k}$$

• (k - 2)-form field B_{k-2} with gauge trafo: $\delta B_{k-2} = -X_{k-2}$ (descent of X_k)

3 Coupling to
$$Y_{D+2-k}$$
:
 $S_{GS} = \int \frac{1}{2} |dB_{k-2} + X_{k-1}|^2 + B_{k-2} Y_{D+2-k}$

Note

Exchanging $Y_{D+2-k} \leftrightarrow X_{k-2}$ corresponds to $B_{k-2} \leftrightarrow \widetilde{B}_{D-k}$

Additional contribution from *B* field

Green-Schwarz mechanism in 4D

GS mechanism in 4D (i.e. D = 4, k = 2) with 1 anomalous $U(1)_A$:

O Factorization: $I_6 = X_4 Y_2$ where

• $Y_2 = dA_A$ is the field strength of $U(1)_A$

•
$$X_4 = A_{grav-grav-U(1)_A} tr R^2 + \sum_i A_{G_i-G_i-U(1)_A} tr F_i^2$$

2 0-form field (axion) *a* with gauge trafo: $\delta_{\lambda} a = -\lambda$

• Coupling to
$$X_4$$
:
 $S_{GS} = \int \frac{1}{2} |da + Y_1|^2 + aX_4 = \int \frac{1}{2} |da + A_A|^2 + aX_4$

Consequences

- Anomalies are cancelled
- Axionic coupling gives Stückelberg mass to $U(1)_A$
- Axion in 4D is dual to 2-form field B_2 (in the sense that $*H_3 = H_1$) \rightarrow use later

Part II

GS mechanism in String Theory

Green-Schwarz mechanism in top-down approach

The introduction of GS axions might seem *ad hoc*, but is automatically *implemented* in string theory.

- Start with 10D (heterotic) SUGRA
- Factorize anomaly polynomial $I_{12} = X_4^{10D} X_8^{10D} X_4^{10D} = \text{tr}\mathfrak{R}^2 \text{tr}\mathfrak{F}_1^2 \text{tr}\mathfrak{F}_2^2$
- Cancel anomaly with $\delta \mathfrak{B}_2$ which is the descent of X_4^{10D}
- For dimensional reduction, decompose 10D 2-forms
 - $\mathfrak{B} \rightarrow B + \mathcal{B}$
 - $\mathfrak{R} \to R + \mathcal{R}$
 - $\mathfrak{F}_i \to F_i + \mathcal{F}_i$
- Integrate out internal space (Orbifold/smooth CY) to obtain I₆ in 4D SUGRA
- 4D Anomalies cancelled by B_2 and B_2

$$I_{6} = \frac{1}{(2\pi)^{6}} \int_{X} \left\{ \frac{1}{6} \left(tr[\mathcal{F}_{1}\mathcal{F}_{1}] \right)^{2} + \frac{1}{4} \left(tr\mathcal{F}_{1}^{2} - \frac{1}{2} tr\mathcal{R}^{2} \right) tr\mathcal{F}_{1}^{2} - \frac{1}{16} \left(tr\mathcal{F}_{1}^{2} - \frac{5}{12} tr\mathcal{R}^{2} \right) tr\mathcal{R}^{2} \right\} tr[\mathcal{F}_{1}\mathcal{F}_{1}] + (1 \rightarrow 2)$$

General remarks:

• \mathcal{F}, \mathcal{R} : internal (6D), F, R: external (4D)

- ${\cal F}$ Abelian
- $\mathcal{F}=\mathcal{F}_1\oplus\mathcal{F}_2\in E_8\otimes E_8$

$$I_{6} = \frac{1}{(2\pi)^{6}} \int_{X} \left\{ \frac{1}{6} (\operatorname{tr}[\mathcal{F}_{1}\mathcal{F}_{1}])^{2} + \frac{1}{4} (\operatorname{tr}\mathcal{F}_{1}^{2} - \frac{1}{2} \operatorname{tr}\mathcal{R}^{2}) \operatorname{tr}\mathcal{F}_{1}^{2} - \frac{1}{16} (\operatorname{tr}\mathcal{F}_{1}^{2} - \frac{5}{12} \operatorname{tr}\mathcal{R}^{2}) \operatorname{tr}\mathcal{R}^{2} \right\} \operatorname{tr}[\mathcal{F}_{1}\mathcal{F}_{1}] + (1 \to 2)$$

- 1st term:
 - $tr[\mathcal{F}F]$ projects onto Abelian part of F with $\mathcal{F} \not \perp F$
 - Generically $tr[\mathcal{FF}] = 0 \Leftrightarrow \mathcal{F} \perp F \Leftrightarrow I_6 = 0$
 - Anomalies: $U(1)_A imes U(1)'_A imes U(1)''_A$, $U(1)^2_A imes U(1)'_A$, $U(1)^3_A$

$$\begin{split} I_{6} &= \frac{1}{(2\pi)^{6}} \int_{X} \left\{ \frac{1}{6} \left(\text{tr}[\mathcal{F}_{1}F_{1}] \right)^{2} + \frac{1}{4} \left(\text{tr}\mathcal{F}_{1}^{2} - \frac{1}{2}\text{tr}\mathcal{R}^{2} \right) \text{tr}F_{1}^{2} \right. \\ &\left. - \frac{1}{16} \left(\text{tr}\mathcal{F}_{1}^{2} - \frac{5}{12}\text{tr}\mathcal{R}^{2} \right) \text{tr}R^{2} \right\} \text{tr}[\mathcal{F}_{1}F_{1}] + (1 \to 2) \end{split}$$

2nd term:

- tr[\mathcal{FF}] projects onto Abelian part of F with $\mathcal{F} \not \perp F$
- From trF², we get Abelian and non-Abelian anomalies
- Anomalies: $U(1)_A \times G \times G$, $G = U(1), U(1)_A, SU(N), SO(N), \dots$

$$\begin{split} I_{6} &= \frac{1}{(2\pi)^{6}} \int_{X} \left\{ \frac{1}{6} \left(\text{tr}[\mathcal{F}_{1}F_{1}] \right)^{2} + \frac{1}{4} \left(\text{tr}\mathcal{F}_{1}^{2} - \frac{1}{2}\text{tr}\mathcal{R}^{2} \right) \text{tr}F_{1}^{2} \\ &- \frac{1}{16} \left(\text{tr}\mathcal{F}_{1}^{2} - \frac{5}{12}\text{tr}\mathcal{R}^{2} \right) \text{tr}\mathcal{R}^{2} \right\} \text{tr}[\mathcal{F}_{1}F_{1}] + (1 \to 2) \end{split}$$

3rd term:

- $tr[\mathcal{F}F]$ projects onto Abelian part of F with $\mathcal{F} \not\perp F$
- From $tr R^2$, we get gravity anomalies
- Anomalies: $U(1)_A imes ext{grav} imes ext{grav}$

Orbifold	🛜 Calabi-Yau
Geometry given by quotient of T^6 by discrete \mathbb{Z}_N group	Geometry given by topologi- cal data like divisors, Intersection numbers,

Orbifold	🤯 Calabi–Yau
Geometry given by quotient of T^6 by discrete \mathbb{Z}_N group	Geometry given by topologi- cal data like divisors, Intersection numbers,
Gauge sector described by Orbi- fold shift and Wilson lines	Gauge sector describe by stable vector bundle

Orbifold	🛜 Calabi–Yau
Geometry given by quotient of \mathcal{T}^6 by discrete \mathbb{Z}_N group	Geometry given by topologi- cal data like divisors, Intersection numbers,
Gauge sector described by Orbi- fold shift and Wilson lines	Gauge sector describe by stable vector bundle
Impose modular invariance for consistency	Impose Bianchi Identities and DUY equations for consistency

Orbifold	🛜 Calabi–Yau
Geometry given by quotient of T^6 by discrete \mathbb{Z}_N group	Geometry given by topologi - cal data like divisors, Intersection numbers,
Gauge sector described by Orbi- fold shift and Wilson lines	Gauge sector describe by stable vector bundle
Impose modular invariance for consistency	Impose Bianchi Identities and DUY equations for consistency
exact CFT calculations possible	only SUGRA approximation

Procedure Start at Orbifold and extrapolate to CY regime Fabian Ruehle (BCTP Bonn) Anomalies and Discrete Symmetries NEU (07/16/2012) 13 / 36

Heterotic Compactification Spaces - Orbifolds

Construction mechanism:

- \bullet Start with \mathbb{R}^2 plane
- Divide out torus lattice Γ_T
- Divide out orbifold action

Heterotic Compactification Spaces - Orbifolds

Construction mechanism:

- ullet Start with \mathbb{R}^2 plane
- Divide out torus lattice Γ_T
- Divide out orbifold action

Kinds of Strings:

Untwisted strings

Heterotic Compactification Spaces - Orbifolds

Construction mechanism:

- ullet Start with \mathbb{R}^2 plane
- Divide out torus lattice Γ_T
- Divide out orbifold action

Kinds of Strings:

Twisted strings
Heterotic Compactification Spaces - Orbifolds

Construction mechanism:

- ullet Start with \mathbb{R}^2 plane
- Divide out torus lattice Γ_T
- Divide out orbifold action

Kinds of Strings:

Massive strings

Anomaly cancellation on Orbifolds:

On orbifolds, there is a unique Kalb-Ramond field B_2 (with dual axion *a*), thus

- all **anomalies** are **proportional** such that the same **axionic** coupling can cancel all at once
- at most 1 anomalous U(1) for suitable choice of U(1) basis
- GS anomaly cancellation ensured by modular invariance conditions

Anomaly universality

$$\mathsf{Coupling} \,\, a \,\, X_4 \! \to \mathcal{A}_{\mathsf{grav}\text{-}\mathsf{grav}\text{-}\mathit{U}(1)} \sim \mathcal{A}_{\mathsf{G}\text{-}\mathsf{G}\text{-}\mathit{U}(1)} \sim \mathcal{A}_{\mathit{U}(1)_{\mathcal{A}\text{-}}\mathit{U}(1)_{\mathcal{B}\text{-}}\mathit{U}(1)_{\mathcal{C}}}$$

Heterotic Compactification Spaces - Orbifolds

Consequences: [Lee,Raby,Ratz,Ross,Schieren,Schmidt-Hoberg,Vaudrevange]

- Anomalies ok as long as all are proportional
- There is a unique \mathbb{Z}_4^R symmetry that
 - assumes family universality
 - works after doublet-triplet splitting
 - is compatible with SO(10) GUT
 - forbids dim 4 and 5 proton decay operators
 - ${\scriptstyle \bullet }$ forbids the μ term
 - Realized in string theory in a Z₂ × Z₂ orbifold construction [Blaszczyk,Groot Nibbelink,Ratz,FR,Trapletti,Vaudrevange]

Summary

- On orbifolds all anomalies are universal
- very constrained choice for discrete symmetries

Construction mechanism:

- Start with Orbifold
- Cut out singularitites
- Glue in compact smooth surfaces
- Describe via Gauged Linear Sigma Models (GLSMs) [Witten]

Construction mechanism:

- Start with Orbifold
- Cut out singularitites
- Glue in compact smooth surfaces
- Describe via Gauged Linear Sigma Models (GLSMs) [Witten]

Terminology:

- Divisors $\widehat{=}$ Codimension 1 hypersurfaces \Leftrightarrow (1,1) forms
- Inherited Divisors $\hat{=}$ Torus away from singularitites

Heterotic Compactification Spaces - Blowup CYs

Anomaly cancellation in Blowup:

In **blowup**, there are 4D axions arising from both B_2 and B_2 , thus:

- anomalies are non-universal
- as many anomalous U(1)'s as rank of line bundle
- Absence of non-Abelian anomalies ensured by Bianchi identities [Witten]

Anomaly cancellation in Blowup:

In **blowup**, there are 4D axions arising from both B_2 and B_2 , thus:

- anomalies are non-universal
- as many anomalous U(1)'s as rank of line bundle
- Absence of non-Abelian anomalies ensured by Bianchi identities [Witten]

Connection between **blowup** with line bundles and **orbifold**:

- Blowup modes ↔ twisted orbifold states
- Kähler parameters ↔ vev (real part) of blowup modes
- Axions in $\mathcal{B}_2 \leftrightarrow$ phases of blowup modes
- $E_8 \times E_8$ weights \leftrightarrow **Orbifold matter** states

Using this correspondence and the non-triviality of the anomaly polynomial, the orbifold spectrum can be matched completely with the blowup spectrum [Nibbelink,Nilles,Trapletti;Blaszczyk,Cabo Bizet,Nilles,FR]

Part III

Example: The T^6/\mathbb{Z}_3 Orbifold and its resolution

Orbifold

Compactify on 6D Lie root lattice $SU(3)^3$ and divide out orbifold \mathbb{Z}_3 action θ :

$$\theta: (z_1, z_2, z_3) \mapsto (e^{2\pi i/3} z_1, e^{2\pi i/3} z_2, e^{-2\pi i 2/3} z_3)$$

- Orbifold action given by twist vector $v = \frac{1}{3}(1, 1, -2)$
- Modular invariance requires a shift V in the $E_8 \times E_8$ gauge sector s.t. $3(V^2 v^2) = 0 \mod 2$
- Choose Standard embedding $V = \frac{1}{3}(1, 1, -2, 0^5)(0^8) = v^*$

$$\begin{array}{ll} \mbox{Gauge group:} & [E_6 \times SU(3)]_{\rm vis} \times [E_8]_{\rm hid} \\ & \mbox{Matter:} & 3({\bf 27},\overline{\bf 3};{\bf 1}) + 27[({\bf 27},{\bf 1};{\bf 1}) + 3({\bf 1},{\bf 3};{\bf 1})] \end{array}$$

Want to construct **smooth CY** with line bundles from orbifold using **toric** (algebraic) **geometry**. Impose

• **Bianchi identity** (ensures absence of purely non-Abelian anomalies [Witten]):

$$H = dB + \omega_{YM} - \omega_L \rightarrow \int_{\mathcal{C}_4} dH = \int_{\mathcal{C}_4} \operatorname{tr} \mathcal{F}^2 - \operatorname{tr} \mathcal{R}^2 \stackrel{!}{=} 0$$

• **Donaldson–Uhlenbeck–Yau** (ensures 4d $\mathcal{N} = 1$ SUSY)

$$\int_X J \wedge J \wedge \mathcal{F} = 0$$

In order to solve these equations, need divisors \mathcal{C}_4 and their intersection numbers

Fabian Ruehle (BCTP Bonn) Anomalies and Discrete Symmetries

Toric description of T^6/\mathbb{Z}^3

Analytic Description of T^2

- Introduce complex coordinate $u \in \mathbb{C}/\Gamma_T$
- Torus described by double-periodic function $\wp(u)$ with $\wp(u+1) = \wp(u+\tau) = \wp(u)$

Toric description of T^6/\mathbb{Z}^3

Analytic Description of T^2

- Introduce complex coordinate $u \in \mathbb{C}/\Gamma_T$
- Torus described by double-periodic function $\wp(u)$ with $\wp(u+1) = \wp(u+\tau) = \wp(u)$

Algebraic Description of T^2

- Introduce 3 homogeneous coordinates z_1, z_2, z_3 in \mathbb{P}^2
- Impose cubic equation $z_1^3 + z_2^3 + z_3^3 + t \ z_1 z_2 z_3 = 0$
- Impose condition on absolute values $|z_1|^2 + |z_2|^2 + |z_3|^2 = a$
- t corresponds to CS, a to Kähler parameter of the torus

One finds that for $\tau = e^{2\pi i/3} \Rightarrow t = 0$

<i>U</i> (1)'s	<i>z</i> ₁₁	<i>z</i> ₁₂	<i>Z</i> ₁₃	<i>z</i> ₂₁	<i>z</i> 22	<i>Z</i> 23	<i>z</i> ₃₁	<i>Z</i> 32	Z33
R_1	1	1	1	0	0	0	0	0	0
R_2	0	0	0	1	1	1	0	0	0
R ₃	0	0	0	0	0	0	1	1	1

$$\sum_{\rho=1}^{3} z_{i\rho}^{3} = 0, \quad i = 1, 2, 3$$
$$\sum_{\rho=1}^{3} |z_{i\rho}|^{2} = a_{i}, \quad i = 1, 2, 3$$

- Introduce 3 times 3 z's to descibe the three T^2
- Divide by orbifold \mathbb{Z}_3
- Resolve fixed points by introducing 27 x's that resolve the FPs by gluing in 27 \mathbb{P}^2 at the singularities

[Blaszczyk,Groot Nibbelink, FR]

Fabian Ruehle (BCTP Bonn) Anomalies and Discrete Symmetries

U(1)'s	<i>z</i> ₁₁	<i>z</i> ₁₂	<i>Z</i> 13	<i>z</i> ₂₁	<i>z</i> 22	<i>z</i> ₂₃	<i>z</i> ₃₁	<i>z</i> ₃₂	Z33	<i>x</i> ₁₁₁	• • •	<i>X</i> 333
R_1	1	1	1	0	0	0	0	0	0	0	0	0
R_2	0	0	0	1	1	1	0	0	0	0	0	0
R_3	0	0	0	0	0	0	1	1	1	0	0	0
<i>E</i> ₁₁₁	1	0	0	1	0	0	1	0	0	-3	0	0
÷		۰.			۰.			۰.			۰.	
E ₃₃₃	0	0	1	0	0	1	0	0	1	0	0	-3

$$\begin{split} \sum_{\rho=1}^{3} z_{1\rho}^{3} \prod_{\beta,\gamma=1}^{3} x_{\rho\beta\gamma} &= 0, \ \sum_{\rho=1}^{3} z_{2\rho}^{3} \prod_{\alpha,\gamma=1}^{3} x_{\alpha\rho\gamma} &= 0, \ \sum_{\rho=1}^{3} z_{3\rho}^{3} \prod_{\alpha,\beta=1}^{3} x_{\alpha\beta\rho} &= 0, \\ \sum_{\rho=1}^{3} |z_{i\rho}|^{2} &= a_{i}, \qquad \qquad i = 1, 2, 3 \\ \sum_{\rho=1}^{3} |z_{i\rho}|^{2} - 3|x_{\alpha\beta\gamma}| &= b_{\alpha\beta\gamma}, \qquad \alpha, \beta, \gamma = 1, 2, 3 \end{split}$$

Fabian Ruehle (BCTP Bonn)

Anomalies and Discrete Symmetries

22 / 36

- Introduce exceptional divisors $E_{\alpha\beta\gamma}$ at $x_{\alpha\beta\gamma} = 0$
- Introduce gauge flux $\mathcal{F} = E_{\alpha\beta\gamma} V_{\alpha\beta\gamma}^{I} H_{I}$
 - The H_I are the 16 Cartan generators of $E_8 imes E_8$
 - The 16 \times 27 matrix $V^I_{\alpha\beta\gamma}$ describes the gauge line bundle at the 27 fixed points
- Note that in the orbifold limit the $E_{\alpha\beta\gamma}$ are shrunk to a point \Rightarrow flux is located at fixed points

- Introduce exceptional divisors $E_{\alpha\beta\gamma}$ at $x_{\alpha\beta\gamma} = 0$
- Introduce gauge flux $\mathcal{F} = E_{\alpha\beta\gamma}V_{\alpha\beta\gamma}^{I}H_{I}$
 - The H_I are the 16 Cartan generators of $E_8 imes E_8$
 - The 16 \times 27 matrix $V^I_{\alpha\beta\gamma}$ describes the gauge line bundle at the 27 fixed points
- Note that in the orbifold limit the $E_{\alpha\beta\gamma}$ are shrunk to a point \Rightarrow flux is located at fixed points

To make contact with the orbifold description:

- Choose the $V_{\alpha\beta\gamma}$ to coincide with the internal $E_8 \times E_8$ momentum of some twisted orbifold state located at (α, β, γ)
- Vev of orbifold state generates the blowup of the $E_{\alpha\beta\gamma}$

Field redefinitions

$$\begin{array}{l} \Phi^{\mathsf{BU-Mode}}_{\alpha\beta\gamma} = e^{b_{\alpha\beta\gamma} + i\beta_{\alpha\beta\gamma}} \\ \Phi^{\mathsf{CY}}_{\alpha\beta\gamma} = e^{-b_{\alpha\beta\gamma} - i\beta_{\alpha\beta\gamma}} \Phi^{\mathsf{Orb}}_{\alpha\beta\gamma} \quad \Rightarrow \quad Q^{\mathsf{CY}} = Q^{\mathsf{Orb}} + V_{\alpha\beta\gamma} \end{array}$$

Note:

- Kähler parameters $b_{lphaeta\gamma}\propto {
 m vol}(E_{lphaeta\gamma})$
 - $b_{lphaeta\gamma} o \infty$: Blowup limit
 - $b_{lphaeta\gamma}\ll 0$: Orbifold limit

[Aspinwall,Greene,Morrison]

• Kalb-Ramond 2-form $\mathfrak{B}_2 = B_2 + \beta_{\alpha\beta\gamma} E_{\alpha\beta\gamma}$

• Axions
$$\beta_{\alpha\beta\gamma} \to \beta_{\alpha\beta\gamma} + \lambda_I V_{\alpha\beta\gamma}^I$$

- Gauge bundle is sum of line bundles
 - Gauge group rank not reduced by **bundle**
 - U(1)'s in direction of line bundle anomalous
 - Anomaly cancelled by axions β , but U(1)'s massive

Choose 3 different **bundle vectors** from (27, 1) of $E_6 \times SU(3)$ • $V_1 = \frac{1}{3}(2, 2, 2, 0^5)(0^8)$ at k fixed points • $V_2 = \frac{1}{3}(-1, -1, -1, 3, 0^4)(0^8)$ at p fixed points • $V_3 = -(V_1 + V_2)$ at $q \equiv 27 - p - q$ fixed points $\Rightarrow \mathcal{F} = \sum_{i=1}^{k} E_i V_1^I H_i + \sum_{j=k+1}^{k+p} E_j V_2^I H_i + \sum_{n=k+p+1}^{27} E_n V_3^I H_i$

Choose 3 different **bundle vectors** from (27, 1) of $E_6 \times SU(3)$ • $V_1 = \frac{1}{3}(2, 2, 2, 0^5)(0^8)$ at k fixed points • $V_2 = \frac{1}{3}(-1, -1, -1, 3, 0^4)(0^8)$ at p fixed points • $V_3 = -(V_1 + V_2)$ at $q \equiv 27 - p - q$ fixed points $\Rightarrow \mathcal{F} = \sum_{i=1}^{k} E_i V_1^I H_i + \sum_{j=k+1}^{k+p} E_j V_2^J H_i + \sum_{n=k+p+1}^{27} E_n V_3^I H_i$

Check consistency conditions:

Bianchi Identities

$$\int_{\mathcal{E}_{\alpha\beta\gamma}} \text{tr}\mathcal{F}^2 = \int_{\mathcal{E}_{\alpha\beta\gamma}} \text{tr}\mathcal{R}^2 \quad \Rightarrow \quad V_1^2 = V_2^2 = V_3^2 = \frac{4}{3}$$

Choose 3 different **bundle vectors** from (27, 1) of $E_6 \times SU(3)$ • $V_1 = \frac{1}{3}(2, 2, 2, 0^5)(0^8)$ at k fixed points • $V_2 = \frac{1}{3}(-1, -1, -1, 3, 0^4)(0^8)$ at p fixed points • $V_3 = -(V_1 + V_2)$ at $q \equiv 27 - p - q$ fixed points $\Rightarrow \mathcal{F} = \sum_{i=1}^{k} E_i V_1^I H_i + \sum_{j=k+1}^{k+p} E_j V_2^I H_i + \sum_{n=k+p+1}^{27} E_n V_3^I H_i$

Check consistency conditions:

Bianchi Identities

$$\int_{\mathcal{E}_{\alpha\beta\gamma}} \text{tr}\mathcal{F}^2 = \int_{\mathcal{E}_{\alpha\beta\gamma}} \text{tr}\mathcal{R}^2 \quad \Rightarrow \quad V_1^2 = V_2^2 = V_3^2 = \frac{4}{3}$$

DUY equations

$$\int J \wedge J \wedge \mathcal{F} = 0 \implies \sum_{\alpha\beta\gamma} V_{\alpha\beta\gamma}^{I} \operatorname{vol}(E_{\alpha\beta\gamma}) = 0 \quad \forall I$$

$$\sum_{i=1}^{k} V_{1} \operatorname{vol}(E_{i}) + \sum_{j=k+1}^{k+p} V_{2} \operatorname{vol}(E_{j}) + \sum_{n=k+p+1}^{27} V_{3} \operatorname{vol}(E_{n}) = 0$$

Fabian Ruehle (BCTP Bonn)

The gauge bundle breaks $E_6 \rightarrow SO(8) \times U(1)_A \times U(1)_B$: $27 \rightarrow 8_{s(1,-1)} + 8_{c(1,1)} + 8_{v(-2,0)} + 1_{(-2,-2)} + 1_{(-2,2)} + 1_{(4,0)}$

Fabian Ruehle (BCTP Bonn) Anomalies and Discrete Symmetries

The gauge bundle breaks $E_6 \rightarrow SO(8) \times U(1)_A \times U(1)_B$: $27 \rightarrow 8_{s(1,-1)} + 8_{c(1,1)} + 8_{v(-2,0)} + 1_{(-2,-2)} + 1_{(-2,2)} + 1_{(4,0)}$

Calculate anomaly polynomial $I_6 = \int_X I_{12}$ in background:

$$\begin{split} I_6 &\sim F_A^3 \left(\frac{k-6}{12}\right) + F_A F_B^2 \left(\frac{k-18}{4}\right) \\ &+ F_A \left[\text{tr} F_{SU(3)}^2 + \text{tr} F_{SO(8)}^2 + \frac{7}{48} \text{tr} R^2 \right] \left(\frac{k-9}{2}\right) \\ &+ F_B \left[\text{tr} F_{SU(3)}^2 + \text{tr} F_{SO(8)}^2 + \frac{7}{48} \text{tr} R^2 + \frac{1}{48} F_A^2 + \frac{1}{8} F_B^2 \right] \left(\frac{p-q}{2}\right) \end{split}$$

• $U(1)_A$ always anomalous, $U(1)_B$ non-anomalous iff p=q

- Remnant anomaly universality from orbifold:
 - Coefficients of non-Abelian anomaly from same E₈ prop.
 - Coefficients of of non-Abelian and of grav. anomaly prop.

Axions $\beta_{\alpha\beta\gamma}$ shift under $U(1)_A$ and $U(1)_B$ \Rightarrow In general both U(1)'s massive, even if not anomalous:

$$S \subset \int_X H_3 \wedge *H_3 = A'_{\mu}A^{\mu}_I M_{IJ} + \dots, \quad M_{IJ} = V^I_r V^J_s \int_X E_r *_6 E_s$$

Mass matrix M_{IJ} is positive definite, of rank 2, and depends on the Kähler parameters.

Note

Stückelberg mass possible without an anomalous $U(1) \rightarrow$ rank reduction from line bundles

Part IV

Remnant discrete symmetries

Non-*R* symmetries arise as discrete subgroups of $U(1)_A$ and $U(1)_B$ which leave vevs of blowup modes invariant $27 \rightarrow 8_{s(1,-1)} + 8_{c(1,1)} + 8_{v(-2,0)} + 1_{(-2,-2)} + 1_{(-2,2)} + 1_{(4,0)}$

Blowup modes:

 $\mathbf{1}_{(-2,-2)},~\mathbf{1}_{(-2,2)},~\mathbf{1}_{(4,0)}$ corresponding to $\mathit{V}_1,~\mathit{V}_2,~\mathit{V}_3$

Leave discrete $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry generated by

$$T_{\pm}: \quad \phi_{(q_a,q_b)} \to e^{\frac{2\pi i}{2}(q_A \pm q_B)} \phi_{(q_A,q_B)}$$

Both symmetries are non-anomalous

28 / 36

Properties of *R* symmetries

- R symmetries do not commute with SUSY
- Grassmann coordinate θ transforms under *R*-symmetries
- *R* symmetries only defined up to mixing with non-*R* symmetries
- Usual choice of normalization: θ has charge 1 \rightarrow Superpotential has charge 2

Properties of *R* symmetries

- R symmetries do not commute with SUSY
- Grassmann coordinate θ transforms under *R*-symmetries
- *R* symmetries only defined up to mixing with non-*R* symmetries
- Usual choice of normalization: θ has charge 1 \rightarrow Superpotential has charge 2

Origin of *R*-symmetries

- Lorentz symmetry of internal compactification space treat bosons and fermions differently → can give rise to R symmetries in 4D
- Orbifolds are special points in moduli space of enhanced symmetry → expect more *R* symmetries than on generic CY

Remnant *R* symmetries – Orbifold

R-charge on the orbifold defined via a combination of right-moving momenta q and oscillator numbers ΔN : $R = q - \Delta N$ with $q = \frac{1}{3}(1, 1, 1)$ [Kobayashi,Raby,Zhang]

Remnant symmetry of internal space: Sublattice rotations by $2\pi/3$ in each T^2 :

$$T_k^R:\phi
ightarrow e^{2\pi i/3R_k}\phi$$

Order of the **symmetry**:

- For bosons, $R_k \in \frac{1}{3}\mathbb{Z} \Rightarrow \mathbb{Z}_9$ *R*-symmetry
- For fermions, $R^f = R (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, i.e. θ has charge $\frac{1}{6} \Rightarrow \mathbb{Z}_6^R$ symmetry

Summary of conventions

Choose lcm(9,6)=18 $\Rightarrow \mathbb{Z}_{18}$ *R*-symmetry where all fields have integer charges: (bosons,fermions, θ)= $\frac{1}{18}$ (2n,2n-3,3)

Remnant *R* symmetries – Orbifold

Our orbifold blowup modes have

$$R=q-\Delta N=\frac{1}{3}(1,1,1)$$

To identify remnant *R*-symmetries, search for invariant combinations of T_k^R with $T_{U(1)_A}$ and $T_{U(1)_B}$:

$$\begin{aligned} \mathbf{1}_{(-2,-2)} &\to (T_1^R)^a (T_2^R)^b (T_3^R)^c T_{U(1)_A} T_{U(1)_B} \mathbf{1}_{(-2,-2)} \stackrel{!}{=} \mathbf{1}_{(-2,-2)} \\ \mathbf{1}_{(-2,2)} &\to (T_1^R)^a (T_2^R)^b (T_3^R)^c T_{U(1)_A} T_{U(1)_B} \mathbf{1}_{(-2,2)} \stackrel{!}{=} \mathbf{1}_{(-2,2)} \\ \mathbf{1}_{(4,0)} &\to (T_1^R)^a (T_2^R)^b (T_3^R)^c T_{U(1)_A} T_{U(1)_B} \mathbf{1}_{(4,0)} \stackrel{!}{=} \mathbf{1}_{(4,0)} \end{aligned}$$

Result

One finds that $a + b + c = 3 \Rightarrow$ only a (trivial) \mathbb{Z}_2 *R*-symmetry remains in blowup.

31 / 36

Fabian Ruehle (BCTP Bonn) Anomalies and Discrete Symmetries NEU (07/16/2012)

Remnant *R* symmetries – GLSM

Look at simplified model with 3 exceptional divisors:

$$0 = z_{11}^{3} x_{1} + z_{12}^{3} x_{2} + z_{13}^{3} x_{3}$$

$$0 = z_{21}^{3} x_{1} x_{2} x_{3} + z_{22}^{3} + z_{23}^{3}$$

$$0 = z_{31}^{3} x_{1} x_{2} x_{3} + z_{32}^{3} + z_{33}^{3}$$

$$a_{i} = |z_{i1}|^{2} + |z_{i2}|^{2} + |z_{i3}|^{2}$$

$$b_{\alpha} = |z_{1\alpha}|^{2} + |z_{21}|^{2} + |z_{31}|^{2} - 3|x_{\alpha}|^{2}$$

Symmetries:

•
$$z_{i\alpha} \to e^{2\pi i/3} z_{i\alpha}$$

• $(x_1, x_2, x_3) \to e^{2\pi i/3} (x_1, x_2, x_3)$
• ...

Origin of Symmetries

Note that the symmetries are inherited from the special choice of complex structure on the orbifold (absence of $t z_{i1} z_{i2} z_{i3}$ term)

Fabian Ruehle (BCTP Bonn)

Anomalies and Discrete Symmetries

32 / 36

How to check which of these symmetries are *R*-symmetries?

R-symmetries will transform the holomorphic (3,0) form Ω : $\Omega \sim \eta \Gamma \eta dz^i dz^j dz^k \Rightarrow Q_R(\Omega) = Q_R(W)$ [Witten]

Fabian Ruehle (BCTP Bonn) Anomalies and Discrete Symmetries

How to check which of these symmetries are *R*-symmetries?

R-symmetries will transform the holomorphic (3,0) form Ω : $\Omega \sim \eta \Gamma \eta dz^i dz^j dz^k \Rightarrow Q_R(\Omega) = Q_R(W)$ [Witten]

How are the *R*-symmetries broken in blowup?

(Presumably) via marginal deformations in Kähler potential under the presence of the gauge bundle:

$$\int d^2\theta^+ \phi_{4D}(x^\mu) N(z,x) \Lambda \overline{\Lambda}$$

- ϕ_{4D} : 4D modes
- N(z, x): Polynomial in the geometry fields $z_{i\alpha}, x_{\alpha}$
- Λ : WS fermions describing the gauge bundle

N(z,x) might not be compatible with rotational symmetries \Rightarrow *R*-symmetry broken To check transformation of bundle under discrete symmetries:

- Find discrete transformations of coordinate fields *z*, *x* under symmetry in question
- Write down gauge bundle in ambient space
- **Restrict bundle** to toric hypersurface via Koszul sequence
- Find contributing monomials
- Check transformation of monomials under discrete symmetry

Tools

The last three steps should be automatized using cohomcalg [Jurke] and the Koszul extension [Rahn].

34 / 36

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Discussion of anomalies and GS cancellation mechanism

- in 4D with axions arising from factorized I_6
- in 10D with factorized I_{12}

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Discussion of anomalies and GS cancellation mechanism

- in 4D with axions arising from factorized I_6
- in 10D with factorized I_{12}

Embedding in String Theory:

- **Orbifold**: One universal axion ⇒ **Anomalies universal**
- Blowup CY: Several axions \Rightarrow Anomalies not universal
Conclusion

Origin of discrete symmetries:

- Non-R symmetries are discrete remnants of higgsed U(1)'s
- *R* symmetries are discrete remnants of internal Lorentz trafos

Calculation of discrete symmetries:

- Non-R symmetries can be calculated from spectrum
- R symmetries can be calculated from GLSM

Thank you for your attention!