Anomalies and Discrete Symmetries in Heterotic String Constructions

Fabian Rühle

Bethe Center for Theoretical Physics Bonn University

Northeastern University - 07/16/2012

Physics and Astronomy

Based on:

[Lüdeling,FR,Wieck: 1203.5789], [Blaszczyk,Groot Nibbelink,FR: 1111.5852],

[Blaszczyk, Cabo Bizet, Nilles, FR: 1108.0667]

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

- Introduces dimension four and five proton decay operators
- ullet Needs explanation for smallness of μ -term

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ -term
- \Rightarrow Introduce symmetries that suppress/forbid the terms

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ -term
- ⇒ Introduce symmetries that suppress/forbid the terms
- Lacks UV completion

The minimal supersymmetric extension of the Standard Model (MSSM) is phenomenologically well motivated

- Alleviates the hierarchy problem
- Allows for gauge coupling unification
- Provides a natural Dark Matter candidate
- . . .

- Introduces dimension four and five proton decay operators
- Needs explanation for smallness of μ -term
- \Rightarrow Introduce symmetries that suppress/forbid the terms
- Lacks UV completion
- ⇒ Embed in UV complete theory like String Theory

$$W_{\mathsf{bad}} \supset \mu H_u H_d + L H + L Q d^c + Q d^c d^c + L L e^c + Q Q Q L + u^c u^c d^c e^c + \dots$$

In the past, many discrete symmetries proposed to forbid bad terms

$$W_{\text{bad}} \supset \mu H_u H_d + H_d$$

+ $DQC + Qd^c d^c + H_d$
+ $QQQL + u^c u^c d^c e^c + \dots$

• **Z**₂ **Matter Parity** [Farrar, Fayet; Dimopoulos, Raby, Wilczek]

$$W_{\mathsf{bad}} \supset \mu H_u H_d + L H$$

 $+ L Q d^c + Q d^c d^c + L L e^c$
 $+ Q Q Q L + u^c D^c d^c e^c + \dots$

- **Z**₂ Matter Parity [Farrar, Fayet; Dimopoulos, Raby, Wilczek]
- Z₃ Baryon triality [Ibanez,Ross]

$$W_{\text{bad}} \supset \mu H_u H_d + \mathcal{U}$$

$$+ \mathcal{D} \mathcal{C} + \mathcal{D} \mathcal{C} \mathcal{C} + \mathcal{U} \mathcal{C}$$

$$+ \mathcal{D} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C}$$

- **Z**₂ Matter Parity [Farrar, Fayet; Dimopoulos, Raby, Wilczek]
- Z₃ Baryon triality [Ibanez,Ross]
- Z₆ anomaly-free proton hexality
 [Babu,Gogoladze,Wang; Dreiner,Luhn,Thormeier]

$$W_{\mathsf{bad}} \supset \mathcal{W}_{\mathsf{dd}} + \mathcal{W}_{$$

- **Z**₂ Matter Parity [Farrar, Fayet; Dimopoulos, Raby, Wilczek]
- Z₃ Baryon triality [Ibanez,Ross]
- Z₆ anomaly-free proton hexality [Babu,Gogoladze,Wang; Dreiner,Luhn,Thormeier]
- \mathbb{Z}_4^R anomaly-universal R-symmetry [Lee,Raby,Ratz,Ross,Schieren,Schmidt-Hoberg,Vaudrevange]

$$W_{\mathsf{bad}} \supset \mathcal{W}_{\mathsf{bad}} + \mathcal{W}_{\mathsf{d}} +$$

- **Z**₂ Matter Parity [Farrar, Fayet; Dimopoulos, Raby, Wilczek]
- ■ Z₃ Baryon triality [Ibanez,Ross]
- Z₆ anomaly-free proton hexality [Babu,Gogoladze,Wang; Dreiner,Luhn,Thormeier]
- Z^R₄ anomaly-universal R-symmetry
 [Lee,Raby,Ratz,Ross,Schieren,Schmidt-Hoberg,Vaudrevange]
- •

Motivation - String Embedding

Much effort spent on construction of MSSM-like models in last decade.

Motivation - String Embedding

Much effort spent on construction of MSSM-like models in last decade.

Approaches in $E_8 \times E_8$ heterotic string theory:

- Orbifold model building [Blaszczyk, Buchmüller, Groot Nibbelink, Hamaguchi, Kim, Kyae, Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, FR, Trapletti, Vaudrevange, Wingerter, . . .]
- Calabi-Yau model building [Anderson, Bouchard, Braun, Donagi, Gray, He, Lukas, Ovrut, Palti, Pantev, Waldram, . . .]
- Free fermionic constructions [Faraggi, Nanopoulos, Yuan, ...]
- Gepner Models [Dijkstra, Gato-Rivera, Huiszoon, Schellekens, ...]

I will focus on the first two approaches.

Outline

- 4 Anomalies
 - Definition and Description
 - Green-Schwarz mechanism
- Green–Schwarz mechanism in String Theory
 - Structure of anomaly polynomial
 - Introduction of Orbifolds/CYs
 - GS in orbifold compactifications
 - GS in smooth CY compactifications
- **3** Example: The T^6/\mathbb{Z}_3 orbifold and its resolution
 - Orbifold construction
 - Toric resolution of orbifold
- 4 Remnant discrete symmetries
 - Remnant non-R symmetries
 - Remnant R symmetries
 - Calculation of (non-) R symmetry charges
- 6 Conclusion

Part I

Anomalies

Definition of Anomalies

Definition of Anomaly

An anomaly is a symmetry of the classical theory which is broken by quantum effects. Gauge anomalies render theory inconsistent and have to be absent!

Properties of Anomalies

- Anomalies arise at 1-loop
- They are determined by the chiral spectrum
- Can be determined from variation of path integral measure [Fujikawa]
- Can be described in terms of anomaly polynomial [Wess,Zumino;Stora;Alvarez-Gaume,Ginsparg]

Description of Anomalies - Path Integrals

From path integral:

• Look at trafo $\Psi \rightarrow \Psi'$ parameterized by trafo parameter λ :

$$\int \mathcal{D}\Psi e^{iS}
ightarrow \int \mathcal{D}\Psi' J(\lambda) e^{iS} \,, \quad J(\lambda) = e^{i\mathcal{A}} = e^{i\int d^Dx \,I_D}$$

• It is more convenient to work with anomaly polynomial I_{D+2}

$$\mathsf{d}I_D = \delta_\lambda I_{D+1} \quad \mathsf{d}I_{D+1} = I_{D+2}$$
 "Descent equations"

- Anomaly form I_D : linear in trafo parameter λ , polynomial in gauge connections and field strengths
- Chern Simons form I_{D+1} : poynomial in gauge connections and field strengths
- Anomaly polynomial I_{D+2} : closed and gauge invariant polynomial in the field strengths

Description of Anomalies - Feynman diagrams

From Feynman diagram (here D = 4):

- Internal legs: Chiral fermions f
- External legs: Gauge bosons / Gravity

•
$$A = A_{G-G-U(1)} + A_{U(1)_A-U(1)_B-U(1)_C} + A_{grav-grav-U(1)}$$

$$egin{aligned} \mathcal{A}_{G-G-U(1)} & \propto \sum_{\mathsf{f}} q_{\mathsf{f}} \, \ell(r(\mathsf{f})) \ \mathcal{A}_{U(1)_A-U(1)_B-U(1)_C} & \propto \sum_{\mathsf{f}} q_{\mathsf{f}}^A q_{\mathsf{f}}^B q_{\mathsf{f}}^C \ \mathcal{A}_{\mathsf{grav}-\mathsf{grav}-U(1)} & \propto \sum_{\mathsf{f}} q_{\mathsf{f}} \end{aligned}$$

Description of Anomalies - Discrete Anoamlies

Calculation of **discrete** \mathbb{Z}_N anomalies:

- Useful to think of $\mathbb{Z}_N \subset U(1)$
- ullet Quadratic/cubic/mixed U(1)- \mathbb{Z}_N anomalies ill-defined [Banks, Seiberg]
- ullet \Rightarrow Anomalies $\mathcal{A}_{G-G-\mathbb{Z}_N}$, $\mathcal{A}_{U(1)_A-U(1)_B-\mathbb{Z}_N}$, $\mathcal{A}_{\mathsf{grav}-\mathsf{grav}-\mathbb{Z}_N}$

$$\mathcal{A}_{G-G-\mathbb{Z}_N} \propto \left[\sum_{\mathbf{f}} q_{\mathbf{f}}(\mathbb{Z}_N) \, \ell(r(\mathbf{f})) \right] \mod \eta$$
 $\mathcal{A}_{U(1)_A-U(1)_B-\mathbb{Z}_N} \propto \left[\sum_{\mathbf{f}} q_{\mathbf{f}}^A q_{\mathbf{f}}^B q_{\mathbf{f}}(\mathbb{Z}_N) \right] \mod \eta$ $\mathcal{A}_{\mathsf{grav}-\mathsf{grav}-\mathbb{Z}_N} \propto \left[\sum_{\mathbf{f}} q_{\mathbf{f}}(\mathbb{Z}_N) \right] \mod \eta$ $\eta = \left\{ egin{array}{l} rac{N}{2} & \text{if N is even} \\ N & \text{if N is odd} \end{array}
ight.$

Green-Schwarz mechanism

Anomalies can be cancelled via the Green-Schwarz mechanism.

This requires

• Factorization of anomaly polynomial:

$$I_{D+2} = X_k Y_{D+2-k}$$

- **2** (k-2)-form field B_{k-2} with gauge trafo: $\delta B_{k-2} = -X_{k-2}$ (descent of X_k)
- **3 Coupling** to Y_{D+2-k} : $S_{GS} = \int \frac{1}{2} |dB_{k-2} + X_{k-1}|^2 + B_{k-2} Y_{D+2-k}$

Note

Exchanging $Y_{D+2-k} \leftrightarrow X_{k-2}$ corresponds to $B_{k-2} \leftrightarrow \widetilde{B}_{D-k}$

Green-Schwarz mechanism

Anomalies can be cancelled via the Green-Schwarz mechanism.

This requires

Factorization of anomaly polynomial:

$$I_{D+2} = X_k Y_{D+2-k}$$

- **2** (k-2)-form field B_{k-2} with gauge trafo: $\delta B_{k-2} = -X_{k-2}$ (descent of X_k)
- **3 Coupling** to Y_{D+2-k} : $S_{GS} = \int \frac{1}{2} |dB_{k-2} + X_{k-1}|^2 + B_{k-2} Y_{D+2-k}$

Note

Exchanging $Y_{D+2-k} \leftrightarrow X_{k-2}$ corresponds to $B_{k-2} \leftrightarrow \widetilde{B}_{D-k}$

Additional contribution from B field

Green-Schwarz mechanism in 4D

GS mechanism in 4D (i.e. D = 4, k = 2) with 1 anomalous $U(1)_A$:

- **1** Factorization: $I_6 = X_4 Y_2$ where
 - $Y_2 = dA_A$ is the field strength of $U(1)_A$
 - $X_4 = A_{\text{grav}-\text{grav}-U(1)_A} \text{tr} R^2 + \sum_i A_{G_i-G_i-U(1)_A} \text{tr} F_i^2$
- **2 O-form field** (axion) *a* with gauge trafo: $\delta_{\lambda} a = -\lambda$
- **Oupling** to X_4 : $S_{GS} = \int \frac{1}{2} |da + Y_1|^2 + aX_4 = \int \frac{1}{2} |da + A_A|^2 + aX_4$

Consequences

- Anomalies are cancelled
- Axionic coupling gives Stückelberg mass to $U(1)_A$
- Axion in 4D is dual to 2-form field B_2 (in the sense that $*H_3 = H_1$) \rightarrow use later

Part II

GS mechanism in String Theory

Green-Schwarz mechanism in top-down approach

The introduction of GS axions might seem *ad hoc*, but is automatically **implemented** in **string theory**.

- Start with 10D (heterotic) SUGRA
- Factorize anomaly polynomial $I_{12} = X_4^{10D} X_8^{10D}$ $X_4^{10D} = \text{tr} \mathfrak{R}^2 - \text{tr} \mathfrak{F}_1^2 - \text{tr} \mathfrak{F}_2^2$
- Cancel anomaly with $\delta \mathfrak{B}_2$ which is the descent of X_4^{10D}
- For dimensional reduction, decompose 10D 2-forms
 - $\mathfrak{B} \to B + \mathcal{B}$
 - $\mathfrak{R} \to R + \mathcal{R}$
 - $\mathfrak{F}_i \to F_i + \mathcal{F}_i$
- Integrate out internal space (Orbifold/smooth CY) to obtain I_6 in 4D SUGRA
- 4D Anomalies cancelled by B_2 and B_2

$$I_{6} = \frac{1}{(2\pi)^{6}} \int_{X} \left\{ \frac{1}{6} \left(\text{tr}[\mathcal{F}_{1}F_{1}] \right)^{2} + \frac{1}{4} \left(\text{tr}\mathcal{F}_{1}^{2} - \frac{1}{2} \text{tr}\mathcal{R}^{2} \right) \text{tr}F_{1}^{2} \right.$$
$$\left. - \frac{1}{16} \left(\text{tr}\mathcal{F}_{1}^{2} - \frac{5}{12} \text{tr}\mathcal{R}^{2} \right) \text{tr}\mathcal{R}^{2} \right\} \text{tr}[\mathcal{F}_{1}F_{1}] + (1 \to 2)$$

General remarks:

- \mathcal{F}, \mathcal{R} : internal (6D), F, \mathcal{R} : external (4D)
- F Abelian
- $\mathcal{F}=\mathcal{F}_1\oplus\mathcal{F}_2\in E_8\otimes E_8$

$$I_{6} = \frac{1}{(2\pi)^{6}} \int_{X} \left\{ \frac{1}{6} (\text{tr}[\mathcal{F}_{1}F_{1}])^{2} + \frac{1}{4} \left(\text{tr}\mathcal{F}_{1}^{2} - \frac{1}{2} \text{tr}\mathcal{R}^{2} \right) \text{tr}F_{1}^{2} \right.$$
$$\left. - \frac{1}{16} \left(\text{tr}\mathcal{F}_{1}^{2} - \frac{5}{12} \text{tr}\mathcal{R}^{2} \right) \text{tr}\mathcal{R}^{2} \right\} \text{tr}[\mathcal{F}_{1}F_{1}] + (1 \to 2)$$

1st term:

- $tr[\mathcal{F}F]$ projects onto Abelian part of F with $\mathcal{F} \not\perp F$
- Generically $tr[\mathcal{F}F] = 0 \Leftrightarrow \mathcal{F} \perp F \Leftrightarrow I_6 = 0$
- Anomalies: $U(1)_A \times U(1)'_A \times U(1)''_A$, $U(1)^2_A \times U(1)'_A$, $U(1)^3_A$

$$\begin{split} \emph{I}_6 &= \frac{1}{(2\pi)^6} \int_{X} \left\{ \frac{1}{6} \left(\text{tr}[\mathcal{F}_1 \mathcal{F}_1] \right)^2 + \frac{1}{4} \left(\text{tr} \mathcal{F}_1^2 - \frac{1}{2} \text{tr} \mathcal{R}^2 \right) \text{tr} \emph{\textbf{F}}_1^2 \right. \\ &\left. - \frac{1}{16} \left(\text{tr} \mathcal{F}_1^2 - \frac{5}{12} \text{tr} \mathcal{R}^2 \right) \text{tr} \mathcal{R}^2 \right\} \text{tr} [\mathcal{F}_1 \mathcal{F}_1] + (1 \to 2) \end{split}$$

2nd term:

- $tr[\mathcal{F}F]$ projects onto Abelian part of F with $\mathcal{F} \not\perp F$
- From trF², we get Abelian and non-Abelian anomalies
- Anomalies: $U(1)_A \times G \times G$, G = U(1), $U(1)_A$, SU(N), SO(N), ...

$$\begin{split} I_6 &= \frac{1}{(2\pi)^6} \int_X \left\{ \frac{1}{6} \left(\text{tr}[\mathcal{F}_1 F_1] \right)^2 + \frac{1}{4} \left(\text{tr} \mathcal{F}_1^2 - \frac{1}{2} \text{tr} \mathcal{R}^2 \right) \text{tr} F_1^2 \right. \\ &\left. - \frac{1}{16} \left(\text{tr} \mathcal{F}_1^2 - \frac{5}{12} \text{tr} \mathcal{R}^2 \right) \text{tr} \mathcal{R}^2 \right\} \text{tr} [\mathcal{F}_1 F_1] + (1 \to 2) \end{split}$$

3rd term:

- $tr[\mathcal{F}F]$ projects onto Abelian part of F with $\mathcal{F} \not\perp F$
- From trR², we get gravity anomalies
- Anomalies: $U(1)_A \times \text{grav} \times \text{grav}$

Orbifold	Calabi–Yau
Geometry given by quotient of T^6 by discrete \mathbb{Z}_N group	Geometry given by topological data like divisors, Intersection numbers,

Orbifold	Calabi–Yau
Geometry given by quotient of T^6 by discrete \mathbb{Z}_N group	Geometry given by topological data like divisors, Intersection numbers,
Gauge sector described by Orbi- fold shift and Wilson lines	Gauge sector describe by stable vector bundle

Orbifold	Calabi–Yau
Geometry given by quotient of T^6 by discrete \mathbb{Z}_N group	Geometry given by topological data like divisors, Intersection numbers,
Gauge sector described by Orbi- fold shift and Wilson lines	Gauge sector describe by stable vector bundle
Impose modular invariance for consistency	Impose Bianchi Identities and DUY equations for consistency

Orbifold	Calabi–Yau
Geometry given by quotient of T^6 by discrete \mathbb{Z}_N group	Geometry given by topological data like divisors, Intersection numbers,
Gauge sector described by Orbi- fold shift and Wilson lines	Gauge sector describe by stable vector bundle
Impose modular invariance for consistency	Impose Bianchi Identities and DUY equations for consistency
exact CFT calculations possible	only SUGRA approximation

Procedure

Start at Orbifold and extrapolate to CY regime

Heterotic Compactification Spaces - Orbifolds

Construction mechanism:

- ullet Start with \mathbb{R}^2 plane
- Divide out torus lattice Γ_T
- Divide out orbifold action

Heterotic Compactification Spaces - Orbifolds

Construction mechanism:

- ullet Start with \mathbb{R}^2 plane
- Divide out torus lattice Γ_T
- Divide out orbifold action

Kinds of Strings:

Untwisted strings

Heterotic Compactification Spaces - Orbifolds

Construction mechanism:

- ullet Start with \mathbb{R}^2 plane
- Divide out torus lattice Γ_T
- Divide out orbifold action

Kinds of Strings:

Twisted strings

Heterotic Compactification Spaces - Orbifolds

Construction mechanism:

- ullet Start with \mathbb{R}^2 plane
- Divide out torus lattice Γ_T
- Divide out orbifold action

Kinds of Strings:

Massive strings

Heterotic Compactification Spaces - Orbifolds

Anomaly cancellation on Orbifolds:

On orbifolds, there is a unique Kalb-Ramond field B_2 (with dual axion a), thus

- all anomalies are proportional such that the same axionic coupling can cancel all at once
- at most 1 anomalous U(1) for suitable choice of U(1) basis
- GS anomaly cancellation ensured by modular invariance conditions

Anomaly universality

Coupling a $X_4 o \mathcal{A}_{\mathsf{grav-grav-}U(1)} \sim \mathcal{A}_{\mathsf{G-G-}U(1)} \sim \mathcal{A}_{U(1)_{A^-}U(1)_{B^-}U(1)_{C}}$

Heterotic Compactification Spaces - Orbifolds

$\textbf{Consequences:} \quad [\texttt{Lee}, \texttt{Raby}, \texttt{Ratz}, \texttt{Ross}, \texttt{Schieren}, \texttt{Schmidt-Hoberg}, \texttt{Vaudrevange}]$

- Anomalies ok as long as all are proportional
- ullet There is a unique \mathbb{Z}_4^R symmetry that
 - assumes family universality
 - works after doublet-triplet splitting
 - is compatible with SO(10) GUT
 - forbids dim 4 and 5 proton decay operators
 - ullet forbids the μ term
 - Realized in string theory in a $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold construction [Blaszczyk,Groot Nibbelink,Ratz,FR,Trapletti,Vaudrevange]

Summary

- On orbifolds all anomalies are universal
- very constrained choice for discrete symmetries

Construction mechanism:

- Start with Orbifold
- Cut out singularitites
- Glue in compact smooth surfaces
- Describe via Gauged Linear Sigma Models (GLSMs) [Witten]

Construction mechanism:

- Start with Orbifold
- Cut out singularitites
- Glue in compact smooth surfaces
- Describe via Gauged Linear Sigma Models (GLSMs) [Witten]

Terminology:

- Divisors $\widehat{=}$ Codimension 1 hypersurfaces \Leftrightarrow (1,1) forms
- Exceptional Divisors

 Smooth surfaces glued into the orbifold singularitites

Anomaly cancellation in Blowup:

In **blowup**, there are 4D axions arising from both B_2 and B_2 , thus:

- anomalies are non-universal
- as many anomalous U(1)'s as rank of line bundle
- Absence of non-Abelian anomalies ensured by Bianchi identities [Witten]

Anomaly cancellation in Blowup:

In **blowup**, there are 4D axions arising from both B_2 and B_2 , thus:

- anomalies are non-universal
- as many anomalous U(1)'s as rank of line bundle
- Absence of non-Abelian anomalies ensured by Bianchi identities [Witten]

Connection between **blowup** with line bundles and **orbifold**:

- Blowup modes ↔ twisted orbifold states
- Kähler parameters ↔ vev (real part) of blowup modes
- Axions in $\mathcal{B}_2 \leftrightarrow \text{phases of blowup modes}$
- E₈ × E₈ weights ↔ Orbifold matter states

Using this correspondence and the non-triviality of the anomaly polynomial, the orbifold spectrum can be matched completely with the blowup spectrum [Nibbelink,Nilles, Trapletti;Blaszczyk, Cabo Bizet, Nilles, FR]

Part III

Example: The T^6/\mathbb{Z}_3 Orbifold and its resolution

Orbifold

Compactify on 6D Lie root lattice $SU(3)^3$ and divide out orbifold \mathbb{Z}_3 action θ :

$$\theta: (z_1, z_2, z_3) \mapsto (e^{2\pi i/3} z_1, e^{2\pi i/3} z_2, e^{-2\pi i 2/3} z_3)$$

- Orbifold action given by twist vector $v = \frac{1}{3}(1, 1, -2)$
- Modular invariance requires a shift V in the $E_8 \times E_8$ gauge sector s.t. $3(V^2 v^2) = 0 \mod 2$
- Choose Standard embedding $V = \frac{1}{3}(1, 1, -2, 0^5)(0^8)$ "= v"

Gauge group:
$$[E_6 \times SU(3)]_{\text{vis}} \times [E_8]_{\text{hid}}$$

Matter: $3(\mathbf{27}, \overline{\mathbf{3}}; \mathbf{1}) + 27[(\mathbf{27}, \mathbf{1}; \mathbf{1}) + 3(\mathbf{1}, \mathbf{3}; \mathbf{1})]$

Consistency requirements

Want to construct smooth CY with line bundles from orbifold using toric (algebraic) geometry. Impose

• Bianchi identity (ensures absence of purely non-Abelian anomalies [Witten]):

$$H = dB + \omega_{YM} - \omega_L \rightarrow \int_{\mathcal{C}_4} dH = \int_{\mathcal{C}_4} \operatorname{tr} \mathcal{F}^2 - \operatorname{tr} \mathcal{R}^2 \stackrel{!}{=} 0$$

• Donaldson-Uhlenbeck-Yau (ensures 4d $\mathcal{N}=1$ SUSY)

$$\int_X J \wedge J \wedge \mathcal{F} = 0$$

In order to solve these equations, need divisors \mathcal{C}_4 and their intersection numbers

Toric description of T^6/\mathbb{Z}^3

Analytic Description of T^2

- Introduce complex coordinate $u \in \mathbb{C}/\Gamma_T$
- Torus described by double-periodic function $\wp(u)$ with $\wp(u+1) = \wp(u+\tau) = \wp(u)$

Toric description of T^6/\mathbb{Z}^3

Analytic Description of T^2

- Introduce complex coordinate $u \in \mathbb{C}/\Gamma_T$
- Torus described by double-periodic function $\wp(u)$ with $\wp(u+1) = \wp(u+\tau) = \wp(u)$

Algebraic Description of T^2

- Introduce 3 homogeneous coordinates z_1, z_2, z_3 in \mathbb{P}^2
- Impose cubic equation $z_1^3 + z_2^3 + z_3^3 + t z_1 z_2 z_3 = 0$
- Impose condition on absolute values $|z_1|^2 + |z_2|^2 + |z_3|^2 = a$
- \bullet t corresponds to CS, a to Kähler parameter of the torus

 $u \in \mathbb{C}/\Gamma_T$ $z_1, z_2, z_3 \in \mathbb{C}$

One finds that for $\tau = e^{2\pi i/3} \Rightarrow t = 0$

<i>U</i> (1)'s	z ₁₁	<i>z</i> ₁₂	<i>z</i> ₁₃	<i>z</i> ₂₁	<i>z</i> ₂₂	Z ₂₃	<i>z</i> ₃₁	<i>Z</i> 32	<i>Z</i> 33
R_1	1	1	1	0	0	0	0	0	0
R_2	0	0	0	1	1	1	0	0	0
R ₃	0	0	0	0	0	0	1	1	1

$$\sum_{\rho=1}^{3} z_{i\rho}^{3} = 0 , \quad i = 1, 2, 3$$

$$\sum_{\rho=1}^{3} |z_{i\rho}|^2 = a_i \,, \quad i = 1, 2, 3$$

- Introduce 3 times 3 z's to descibe the three T^2
- Divide by orbifold \mathbb{Z}_3
- Resolve fixed points by introducing 27 x's that resolve the FPs by gluing in 27 \mathbb{P}^2 at the singularities

<i>U</i> (1)'s	z ₁₁	<i>z</i> ₁₂	<i>z</i> ₁₃	<i>z</i> ₂₁	<i>z</i> ₂₂	<i>z</i> ₂₃	<i>z</i> ₃₁	<i>Z</i> 32	Z ₃₃	<i>x</i> ₁₁₁		X333
R_1	1	1	1	0	0	0	0	0	0	0	0	0
R_2	0	0	0	1	1	1	0	0	0	0	0	0
R_3	0	0	0	0	0	0	1	1	1	0	0	0
E ₁₁₁	1	0	0	1	0	0	1	0	0	-3	0	0
:		٠			٠.,			٠.,			٠	
E ₃₃₃	0	0	1	0	0	1	0	0	1	0	0	-3

$$\begin{split} \sum_{\rho=1}^{3} z_{1\rho}^{3} \prod_{\beta,\gamma=1}^{3} x_{\rho\beta\gamma} &= 0 \;, \; \sum_{\rho=1}^{3} z_{2\rho}^{3} \prod_{\alpha,\gamma=1}^{3} x_{\alpha\rho\gamma} &= 0 \;, \; \sum_{\rho=1}^{3} z_{3\rho}^{3} \prod_{\alpha,\beta=1}^{3} x_{\alpha\beta\rho} &= 0 \;, \\ \sum_{\rho=1}^{3} |z_{i\rho}|^{2} &= a_{i} \;, & i &= 1, 2, 3 \end{split}$$

$$\sum_{\rho=1}^{3} |z_{i\rho}|^{2} - 3|x_{\alpha\beta\gamma}| &= b_{\alpha\beta\gamma} \;, & \alpha, \beta, \gamma &= 1, 2, 3 \end{split}$$

 $\alpha, \beta, \gamma = 1, 2, 3$

- ullet Introduce exceptional divisors $E_{lphaeta\gamma}$ at $x_{lphaeta\gamma}=0$
- Introduce gauge flux $\mathcal{F} = E_{\alpha\beta\gamma}V_{\alpha\beta\gamma}^IH_I$
 - ullet The H_I are the 16 Cartan generators of $E_8 imes E_8$
 - ullet The 16 imes 27 matrix $V_{lphaeta\gamma}^I$ describes the gauge line bundle at the 27 fixed points
- ullet Note that in the **orbifold limit** the $E_{lphaeta\gamma}$ are shrunk to a point
 - ⇒ flux is located at fixed points

- ullet Introduce exceptional divisors $E_{lphaeta\gamma}$ at $x_{lphaeta\gamma}=0$
- ullet Introduce gauge flux $\mathcal{F} = \mathcal{E}_{lphaeta\gamma} V_{lphaeta\gamma}^I \mathcal{H}_I$
 - ullet The H_I are the 16 Cartan generators of $E_8 imes E_8$
 - ullet The 16 imes 27 matrix $V^I_{lphaeta\gamma}$ describes the gauge line bundle at the 27 fixed points
- Note that in the **orbifold limit** the $E_{\alpha\beta\gamma}$ are shrunk to a point \Rightarrow flux is located at fixed points

To make contact with the orbifold description:

- Choose the $V_{\alpha\beta\gamma}$ to coincide with the internal $E_8\times E_8$ momentum of some twisted orbifold state located at (α,β,γ)
- ullet Vev of orbifold state generates the blowup of the $E_{lphaeta\gamma}$

Field redefinitions:

$$\begin{array}{l} \Phi^{\mathsf{BU-Mode}}_{\alpha\beta\gamma} = e^{b_{\alpha\beta\gamma} + i\beta_{\alpha\beta\gamma}} \\ \Phi^{\mathsf{CY}}_{\alpha\beta\gamma} = e^{-b_{\alpha\beta\gamma} - i\beta_{\alpha\beta\gamma}} \; \Phi^{\mathsf{Orb}}_{\alpha\beta\gamma} \; \Rightarrow \; Q^{\mathsf{CY}} = Q^{\mathsf{Orb}} + V_{\alpha\beta\gamma} \end{array}$$

Note:

- ullet Kähler parameters $b_{lphaeta\gamma} \propto \mathsf{vol}(oldsymbol{\mathcal{E}}_{lphaeta\gamma})$
 - $b_{\alpha\beta\gamma} \to \infty$: Blowup limit
 - $b_{\alpha\beta\gamma}\ll 0$: Orbifold limit

[Aspinwall, Greene, Morrison]

- Kalb-Ramond 2-form $\mathfrak{B}_2 = B_2 + \beta_{\alpha\beta\gamma} E_{\alpha\beta\gamma}$
- Axions $\beta_{\alpha\beta\gamma} \to \beta_{\alpha\beta\gamma} + \lambda_I V_{\alpha\beta\gamma}^I$
- Gauge bundle is sum of line bundles
 - Gauge group rank not reduced by bundle
 - U(1)'s in direction of line bundle anomalous
 - Anomaly cancelled by axions β , but U(1)'s massive

Choose 3 different bundle vectors from (27,1) of $E_6 \times SU(3)$

- $V_1 = \frac{1}{3}(2,2,2,0^5)(0^8)$ at k fixed points
- $V_2 = \frac{1}{3}(-1, -1, -1, 3, 0^4)(0^8)$ at p fixed points
- $V_3=-(V_1+V_2)$ at $q\equiv 27-p-q$ fixed points

$$\Rightarrow \mathcal{F} = \sum_{i=1}^{k} E_{i} V_{1}^{I} H_{I} + \sum_{j=k+1}^{k+p} E_{j} V_{2}^{I} H_{I} + \sum_{n=k+p+1}^{27} E_{n} V_{3}^{I} H_{I}$$

Choose 3 different bundle vectors from (27,1) of $E_6 \times SU(3)$

- $V_1 = \frac{1}{3}(2,2,2,0^5)(0^8)$ at k fixed points
- $V_2 = \frac{1}{3}(-1, -1, -1, 3, 0^4)(0^8)$ at p fixed points
- ullet $V_3=-(V_1+V_2)$ at $q\equiv 27-p-q$ fixed points

$$\Rightarrow \mathcal{F} = \sum_{i=1}^{k} E_{i} V_{1}^{I} H_{I} + \sum_{j=k+1}^{k+p} E_{j} V_{2}^{I} H_{I} + \sum_{n=k+p+1}^{27} E_{n} V_{3}^{I} H_{I}$$

Check consistency conditions:

Bianchi Identities

$$\int_{E_{lphaeta\gamma}} {
m tr} {\cal F}^2 = \int_{E_{lphaeta\gamma}} {
m tr} {\cal R}^2 \quad \Rightarrow \quad V_1^2 = V_2^2 = V_3^2 = rac{4}{3}$$

Choose 3 different bundle vectors from (27,1) of $E_6 \times SU(3)$

- $V_1 = \frac{1}{3}(2,2,2,0^5)(0^8)$ at k fixed points
- $V_2 = \frac{1}{3}(-1, -1, -1, 3, 0^4)(0^8)$ at p fixed points
- ullet $V_3=-(V_1+V_2)$ at $q\equiv 27-p-q$ fixed points

$$\Rightarrow \mathcal{F} = \sum_{i=1}^{k} E_{i} V_{1}^{I} H_{I} + \sum_{j=k+1}^{k+p} E_{j} V_{2}^{I} H_{I} + \sum_{n=k+p+1}^{27} E_{n} V_{3}^{I} H_{I}$$

Check consistency conditions:

Bianchi Identities

$$\int_{{\cal E}_{lphaeta\gamma}}{
m tr}{\cal F}^2=\int_{{\cal E}_{lphaeta\gamma}}{
m tr}{\cal R}^2\quad\Rightarrow\quad V_1^2=V_2^2=V_3^2=rac{4}{3}$$

DUY equations

$$\begin{array}{ll} \int J \wedge J \wedge \mathcal{F} = 0 & \Rightarrow & \sum_{\alpha\beta\gamma} V_{\alpha\beta\gamma}^{I} \operatorname{vol}(E_{\alpha\beta\gamma}) = 0 \quad \forall I \\ \sum\limits_{i=1}^{k} V_{1} \operatorname{vol}(E_{i}) + \sum\limits_{j=k+1}^{k+p} V_{2} \operatorname{vol}(E_{j}) + \sum\limits_{n=k+p+1}^{27} V_{3} \operatorname{vol}(E_{n}) = 0 \end{array}$$

The gauge bundle breaks
$$E_6 o SO(8) imes U(1)_A imes U(1)_B$$
: 27 $o 8_{s(1,-1)} + 8_{c(1,1)} + 8_{v(-2,0)} + 1_{(-2,-2)} + 1_{(-2,2)} + 1_{(4,0)}$

The gauge bundle breaks
$$E_6 o SO(8) imes U(1)_A imes U(1)_B$$
: 27 $o 8_{s(1,-1)} + 8_{c(1,1)} + 8_{v(-2,0)} + 1_{(-2,-2)} + 1_{(-2,2)} + 1_{(4,0)}$

Calculate anomaly polynomial $I_6 = \int_X I_{12}$ in background:

$$\begin{split} I_6 &\sim F_A^3 \left(\frac{k-6}{12}\right) + F_A F_B^2 \left(\frac{k-18}{4}\right) \\ &+ F_A \left[\text{tr} F_{SU(3)}^2 + \text{tr} F_{SO(8)}^2 + \frac{7}{48} \text{tr} R^2 \right] \left(\frac{k-9}{2}\right) \\ &+ F_B \left[\text{tr} F_{SU(3)}^2 + \text{tr} F_{SO(8)}^2 + \frac{7}{48} \text{tr} R^2 + \frac{1}{48} F_A^2 + \frac{1}{8} F_B^2 \right] \left(\frac{p-q}{2}\right) \end{split}$$

- ullet $U(1)_A$ always anomalous, $U(1)_B$ non-anomalous iff p=q
- Remnant anomaly universality from orbifold:
 - Coefficients of non-Abelian anomaly from same E_8 prop.
 - Coefficients of of non-Abelian and of grav. anomaly prop.

Axionic shifts and massive U(1)'s

Axions $\beta_{\alpha\beta\gamma}$ shift under $U(1)_A$ and $U(1)_B$ \Rightarrow In general both U(1)'s massive, even if not anomalous:

$$S \subset \int_X H_3 \wedge *H_3 = A^I_\mu A^\mu_I M_{IJ} + \dots, \quad M_{IJ} = V^I_r V^J_s \int_X E_r *_6 E_s$$

Mass matrix M_{IJ} is positive definite, of rank 2, and depends on the Kähler parameters.

Note

Stückelberg mass possible without an anomalous U(1)

→ rank reduction from line bundles

Part IV

Remnant discrete symmetries

Remnant non-R symmetries

Non-R symmetries arise as discrete subgroups of $U(1)_A$ and $U(1)_B$ which leave vevs of blowup modes invariant

$$27 \xrightarrow{7} 8_{s(1,-1)} + 8_{c(1,1)} + 8_{v(-2,0)} + 1_{(-2,-2)} + 1_{(-2,2)} + 1_{(4,0)}$$

Blowup modes:

$$\mathbf{1}_{(-2,-2)},\,\mathbf{1}_{(-2,2)},\,\mathbf{1}_{(4,0)}$$
 corresponding to $V_1,\,V_2,\,V_3$

Leave discrete $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry generated by

$$T_{\pm}: \quad \phi_{(q_a,q_b)} \to e^{\frac{2\pi i}{2}(q_A \pm q_B)} \; \phi_{(q_A,q_B)}$$

Both symmetries are non-anomalous

Remnant R symmetries

Properties of *R* symmetries

- R symmetries do not commute with SUSY
- ullet Grassmann coordinate ullet transforms under R-symmetries
- R symmetries only defined up to mixing with non-R symmetries
- ullet Usual choice of normalization: heta has charge 1 o Superpotential has charge 2

Remnant R symmetries

Properties of *R* symmetries

- R symmetries do not commute with SUSY
- Grassmann coordinate θ transforms under R-symmetries
- R symmetries only defined up to mixing with non-R symmetries
- ullet Usual choice of normalization: heta has charge 1 o 2 Superpotential has charge 2

Origin of R-symmetries

- Lorentz symmetry of internal compactification space treat bosons and fermions differently → can give rise to R symmetries in 4D
- Orbifolds are special points in moduli space of enhanced symmetry → expect more R symmetries than on generic CY

Remnant R symmetries – Orbifold

R-charge on the orbifold defined via a combination of right-moving momenta q and oscillator numbers ΔN : $R = q - \Delta N$ with $q = \frac{1}{2}(1, 1, 1)$ [Kobayashi,Raby,Zhang]

Remnant symmetry of internal space: Sublattice rotations by $2\pi/3$ in each T^2 :

$$T_k^R: \phi \to e^{2\pi i/3R_k}\phi$$

Order of the symmetry:

- For bosons, $R_k \in \frac{1}{3}\mathbb{Z} \Rightarrow \mathbb{Z}_9$ R-symmetry
- For fermions, $R^{\rm f}=R-(\frac{1}{2},\frac{1}{2},\frac{1}{2})$, i.e. θ has charge $\frac{1}{6}\Rightarrow \mathbb{Z}_6^R$ symmetry

Summary of conventions

Choose lcm(9,6)=18 $\Rightarrow \mathbb{Z}_{18}$ *R*-symmetry where all fields have integer charges: (bosons,fermions, θ)= $\frac{1}{18}$ (2n,2n-3,3)

Remnant R symmetries – Orbifold

Our orbifold blowup modes have

$$R = q - \Delta N = \frac{1}{3}(1, 1, 1)$$

To identify remnant R-symmetries, search for invariant combinations of T_k^R with $T_{U(1)_A}$ and $T_{U(1)_R}$:

$$\begin{aligned} \mathbf{1}_{(-2,-2)} &\to (T_1^R)^a (T_2^R)^b (T_3^R)^c T_{U(1)_A} T_{U(1)_B} \mathbf{1}_{(-2,-2)} \stackrel{!}{=} \mathbf{1}_{(-2,-2)} \\ \mathbf{1}_{(-2,2)} &\to (T_1^R)^a (T_2^R)^b (T_3^R)^c T_{U(1)_A} T_{U(1)_B} \mathbf{1}_{(-2,2)} \stackrel{!}{=} \mathbf{1}_{(-2,2)} \\ \mathbf{1}_{(4,0)} &\to (T_1^R)^a (T_2^R)^b (T_3^R)^c T_{U(1)_A} T_{U(1)_B} \mathbf{1}_{(4,0)} \stackrel{!}{=} \mathbf{1}_{(4,0)} \end{aligned}$$

Result

One finds that $a+b+c=3\Rightarrow$ only a (trivial) \mathbb{Z}_2 *R*-symmetry remains in blowup.

Look at simplified model with 3 exceptional divisors:

$$0 = z_{11}^{3}x_{1} + z_{12}^{3}x_{2} + z_{13}^{3}x_{3}$$

$$0 = z_{21}^{3}x_{1}x_{2}x_{3} + z_{22}^{3} + z_{23}^{3}$$

$$0 = z_{31}^{3}x_{1}x_{2}x_{3} + z_{32}^{3} + z_{33}^{3}$$

$$a_{i} = |z_{i1}|^{2} + |z_{i2}|^{2} + |z_{i3}|^{2}$$

$$b_{\alpha} = |z_{1\alpha}|^{2} + |z_{21}|^{2} + |z_{31}|^{2} - 3|x_{\alpha}|^{2}$$

Symmetries:

- $z_{i\alpha} \rightarrow e^{2\pi i/3} z_{i\alpha}$
- $(x_1, x_2, x_3) \rightarrow e^{2\pi i/3}(x_1, x_2, x_3)$
- . . .

Origin of Symmetries

Note that the symmetries are inherited from the special choice of complex structure on the orbifold (absence of $t z_{i1} z_{i2} z_{i3}$ term)

How to check which of these symmetries are R-symmetries?

R-symmetries will transform the holomorphic (3,0) form Ω :

$$\Omega \sim \eta \Gamma \eta dz^i dz^j dz^k \quad \Rightarrow \quad Q_R(\Omega) = Q_R(W) \quad ext{[Witten]}$$

How to check which of these symmetries are R-symmetries?

R-symmetries will transform the holomorphic (3,0) form Ω :

$$\Omega \sim \eta \Gamma \eta dz^i dz^j dz^k \quad \Rightarrow \quad Q_R(\Omega) = Q_R(W) \quad \text{[Witten]}$$

How are the R-symmetries broken in blowup?

(Presumably) via marginal deformations in Kähler potential under the presence of the gauge bundle:

$$\int d^2\theta^+\phi_{4D}(x^\mu)N(z,x)\Lambda\overline{\Lambda}$$

- ϕ_{4D} : 4D modes
- N(z,x): Polynomial in the geometry fields $z_{i\alpha}, x_{\alpha}$
- Λ: WS fermions describing the gauge bundle

N(z,x) might not be compatible with rotational symmetries \Rightarrow R-symmetry broken

To check transformation of bundle under discrete symmetries:

- Find discrete transformations of coordinate fields z, x under symmetry in question
- Write down gauge bundle in ambient space
- Restrict bundle to toric hypersurface via Koszul sequence
- Find contributing monomials
- Check transformation of monomials under discrete symmetry

Tools

The last three steps should be automatized using cohomcalg [Jurke] and the Koszul extension [Rahn].

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Discussion of anomalies and GS cancellation mechanism

- in 4D with axions arising from factorized I_6
- in 10D with factorized I_{12}

Discrete Symmetries extremely important for model building

- Forbid μ term
- Suppress proton decay operators

Discussion of anomalies and GS cancellation mechanism

- ullet in 4D with axions arising from factorized I_6
- in 10D with factorized I_{12}

Embedding in String Theory:

- Orbifold: One universal axion ⇒ Anomalies universal
- Blowup CY: Several axions ⇒ Anomalies not universal

Origin of discrete symmetries:

- Non-R symmetries are discrete remnants of higgsed U(1)'s
- R symmetries are discrete remnants of internal Lorentz trafos

Calculation of discrete symmetries:

- Non-R symmetries can be calculated from spectrum
- R symmetries can be calculated from GLSM

Thank you for your attention!