

GLSM Description of Heterotic Compactification Spaces

Fabian Röhle

Bethe Center for Theoretical Physics
Bonn University

String Phenomenology 2012 – Cambridge – 28.07.2012

Bonn-Cologne Graduate School
of Physics and Astronomy

Based on: [Blaszczyk, Groot Nibbelink, FR: 1111.5852]

Motivation

Popular heterotic **compactification spaces** for model building:

- **Orbifolds** [Blaszczyk, Buchmüller, Groot Nibbelink, Hamaguchi, Kim, Kyae, Lebedev, Nilles, Quevedo, Raby, Ramos-Sánchez, Ratz, FR, Trapletti, Vaudrevange, Wingerter, ...]
- **Calabi–Yaus** with vector/line bundles [Anderson, Blaszczyk, Bouchard, Braun, Cabo Bizet, Donagi, Groot Nibbelink, Gray, Ha, Held, Honecker, Klevers, Lukas, Nilles, Ovrut, Palti, Pantev, Plöger, FR, Trapletti, Vaudrevange, Waldram, Walter, ...]
- **Free fermionic constructions** [Faraggi, Nanopoulos, Yuan, ...]
- **Gepner Models** [Dijkstra, GatoRivera, Huiszoon, Schellekens, ...]

Motivation

Our approach:

- Start with **orbifold** where theory is **well** under **control** (**CFT** description)
- Try to **map** the theory to a **smooth CY** space via **blowup** procedure

Motivation

Our approach:

- Start with **orbifold** where theory is **well** under **control** (**CFT** description)
- Try to **map** the theory to a **smooth CY** space via **blowup** procedure

Effort to match the theories:

- On the level of **anomalies**
[Blaszczyk, Cabo Bizet, Groot Nibbelink, Nilles, FR, Trapletti]
- On the level of **GLSMs** [Groot Nibbelink]

Motivated by this, we worked out in [1111.5852] the **GLSM** description of **orbifold** resolutions. To our surprise, we found **more** than just the **orbifold** and the **blowup** phase \leadsto this talk

Outline

- 1 Orbifolds and GLSMs
- 2 Example T^6/\mathbb{Z}_3 : GLSM resolution
- 3 Exploring the moduli space

Toroidal Orbifold [Dixon, Harvey, Vafa, Witten, ...]

- Underlying compactification spaces are (products of) tori
- **Complex structure** s.t. space has **additional symmetries**
- **Dividing out** these **symmetries** produces a space with **singularities** at the **fixed points**

Toroidal Orbifold [Dixon, Harvey, Vafa, Witten, ...]

- Underlying compactification spaces are (products of) tori
- **Complex structure** s.t. space has **additional symmetries**
- **Dividing out** these **symmetries** produces a space with **singularities** at the **fixed points**

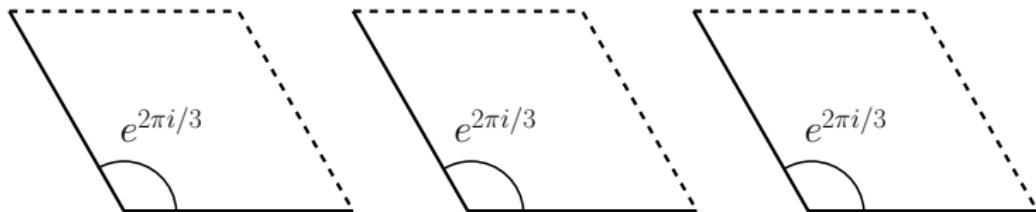
Gauged linear sigma models [Witten]

- Here: $\mathcal{N} = (2, 2)$ **gauge theory** with GG $U(1)^N$ on 2D **WS**
- The **fields** on the **WS** correspond to **coordinates** in **TS**
- The $U(1)$ charges correspond to weights of toric spaces
- The **F-terms** cut out the **target space** manifold (here: CY)
- The **D-terms** specify the **geometric phase** of the theory
- The **FI-parameters** correspond to **Kähler moduli**

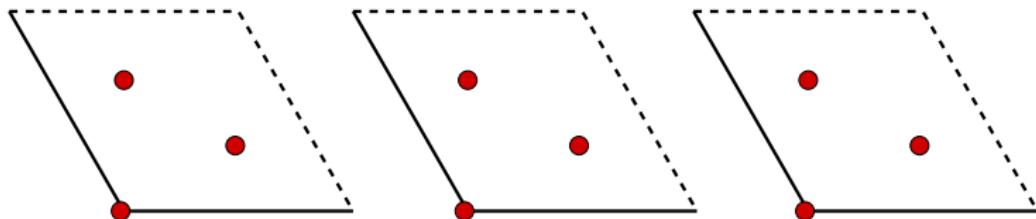
Part II

Example

① Start with 3 two-tori with complex structure $\tau = e^{2\pi i/3}$



② Divide out $\mathbb{Z}_3 \Rightarrow 27$ fixed points



$U(1)$'s	z_{11}	z_{12}	z_{13}	z_{21}	z_{22}	z_{23}	z_{31}	z_{32}	z_{33}	c_1	c_2	c_3
R_1	1	1	1	0	0	0	0	0	0	-3	0	0
R_2	0	0	0	1	1	1	0	0	0	0	-3	0
R_3	0	0	0	0	0	0	1	1	1	0	0	-3

F -terms for c_i and $z_{i\rho}$:

$$\begin{aligned} |z_{i1}|^3 + |z_{i2}|^3 + |z_{i3}|^3 &= 0, & i &= 1, 2, 3, \\ c_i z_{i\rho}^2 &= 0, & i, \rho &= 1, 2, 3 \end{aligned}$$

D -terms:

$$|z_{i1}|^2 + |z_{i2}|^2 + |z_{i3}|^2 - 3|c_i|^2 = a_i, \quad i = 1, 2, 3$$

Geometry:

a_i : sizes of tori

$a_i > 0 \Rightarrow$ at least 3 $z_{i,\rho} \neq 0 \Rightarrow c_i = 0$ (assume this case for now)

z_{i1}, z_{i2}, z_{i3} : coordinate of i^{th} torus

$U(1)$'s	z_{11}	z_{12}	z_{13}	z_{21}	z_{22}	z_{23}	z_{31}	z_{32}	z_{33}	c_1	c_2	c_3	x_1
R_1	1	1	1	0	0	0	0	0	0	-3	0	0	0
R_2	0	0	0	1	1	1	0	0	0	0	-3	0	0
R_3	0	0	0	0	0	0	1	1	1	0	0	-3	0
E_1	1	0	0	1	0	0	1	0	0	0	0	0	-3

F -terms for c_i :

$$z_{i1}^3 x_1 + z_{i2}^3 + z_{i3}^3 = 0, \quad i = 1, 2, 3$$

D -terms:

$$|z_{i1}|^2 + |z_{i2}|^2 + |z_{i3}|^2 = a_i, \quad i = 1, 2, 3$$

$$|z_{11}|^2 + |z_{21}|^2 + |z_{31}|^2 - 3|x_1|^2 = b_1$$

Geometry: [Aspinwall, Plesser]

b_1 : sizes of exceptional cycles

$b_1 < 0 \Rightarrow x_1 \neq 0 \Rightarrow \langle x_1 \rangle$ breaks E_1 to \mathbb{Z}_3 with 27 FP $z_{11} = z_{21} = z_{31} = 0$

$b_1 > 0 \Rightarrow$ FP $z_{11} = z_{21} = z_{31} = 0$ forbidden \Rightarrow smooth

$U(1)$'s	z_{11}	z_{12}	z_{13}	z_{21}	z_{22}	z_{23}	z_{31}	z_{32}	z_{33}	c_1	c_2	c_3	x_1	x_2	x_3
R_1	1	1	1	0	0	0	0	0	0	-3	0	0	0	0	0
R_2	0	0	0	1	1	1	0	0	0	0	-3	0	0	0	0
R_3	0	0	0	0	0	0	1	1	1	0	0	-3	0	0	0
E_1	1	0	0	1	0	0	1	0	0	0	0	0	-3	0	0
E_2	0	1	0	0	1	0	0	1	0	0	0	0	0	-3	0
E_3	0	0	1	0	0	1	0	0	1	0	0	0	0	0	-3

F -terms for c_i :

$$z_{i1}^3 x_1 + z_{i2}^3 x_2 + z_{i3}^3 x_3 = 0, \quad i = 1, 2, 3$$

D -terms:

$$|z_{i1}|^2 + |z_{i2}|^2 + |z_{i3}|^2 = a_i, \quad i = 1, 2, 3$$

$$|z_{1\rho}|^2 + |z_{2\rho}|^2 + |z_{3\rho}|^2 - 3|x_\rho|^2 = b_\rho, \quad \rho = 1, 2, 3$$

Geometry:

$$\left. \begin{array}{l} \langle x_1 \rangle \neq 0 \text{ generates } \mathbb{Z}_3 \text{ with FP } z_{11} = z_{21} = z_{31} = 0 \\ \langle x_2 \rangle \neq 0 \text{ generates } \mathbb{Z}_3 \text{ with FP } z_{12} = z_{22} = z_{32} = 0 \\ \langle x_3 \rangle \neq 0 \text{ generates } \mathbb{Z}_3 \text{ with FP } z_{13} = z_{23} = z_{33} = 0 \end{array} \right\} 3 \times 9 \text{ fixed points}$$

General procedure:

To build an orbifold/resolution **GLSM** model

- ① Choose toric description appropriate for orbifold action
- ② Introduce exceptional divisors to smoothen the singularities
- ③ Set FI parameters $a \gg 0 > b$ to study orbifold or $a \gg b > 0$ to study blowup
- ④ Construct inherited divisors and linear equivalences
- ⑤ Read off intersection numbers

In this way, the resolution phase can be studied using a GLSM which can be smoothly connected to the orbifold.

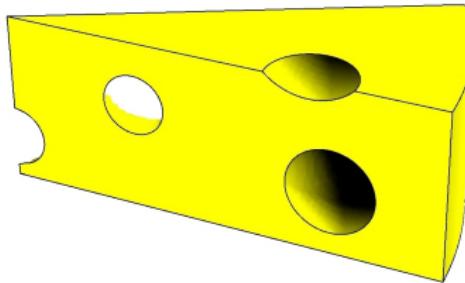
The procedure confirms the results of previous approaches which proceeded via polytopes and gluings. [Lust, Reffert, Scheidegger, Stieberger]

Probing the Moduli Space

But we can **do more**! Having a **GLSM** realization, we can **probe** whole **moduli space** by simply varying **FI** parameter.

Probing the Moduli Space

But we can **do more**! Having a **GLSM** realization, we can **probe** whole **moduli space** by simply varying **FI** parameter.



Can answer question

What happens to a **swiss cheese** when the **holes** are **bigger** than the **cheese**?

Probing the Moduli Space

But we can **do more!** Having a **GLSM** realization, we can **probe** whole **moduli space** by simply varying **FI** parameter.

$U(1)$'s	z_{11}	z_{12}	z_{13}	z_{21}	z_{22}	z_{23}	z_{31}	z_{32}	z_{33}	c_1	c_2	c_3	x_1	x_2	x_3
R_1	1	1	1	0	0	0	0	0	0	-3	0	0	0	0	0
R_2	0	0	0	1	1	1	0	0	0	0	-3	0	0	0	0
R_3	0	0	0	0	0	0	1	1	1	0	0	-3	0	0	0
E_1	1	0	0	1	0	0	1	0	0	0	0	0	-3	0	0
E_2	0	1	0	0	1	0	0	1	0	0	0	0	0	-3	0
E_3	0	0	1	0	0	1	0	0	1	0	0	0	0	0	-3

Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

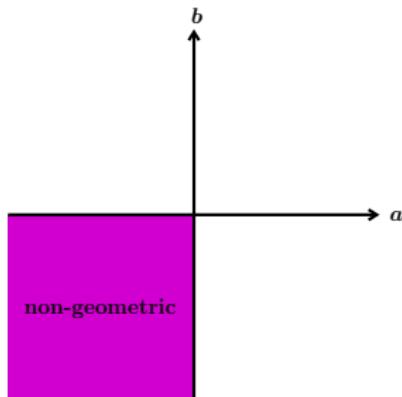
D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a_i, \quad i = 1, 2, 3$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b_\rho, \quad \rho = 1, 2, 3$$

For simplicity: Set $a_i = a$ and $b_\rho = b$.

Phase I: Non-Geometric Regime



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$a < 0, b < 0$:

$$\langle c_i \rangle = \frac{\sqrt{a}}{3}, \quad \langle x_\rho \rangle = \frac{\sqrt{b}}{3}, \quad z_{i\rho} = 0$$

Phase I: Non-Geometric Regime

Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

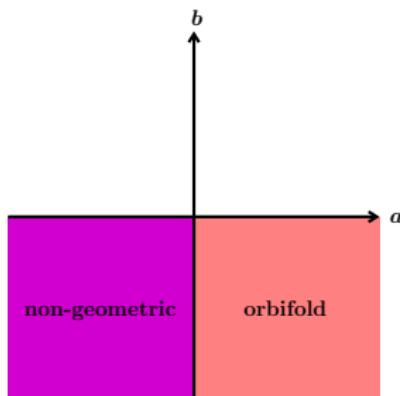
$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$a < 0, b < 0$:

$$\langle c_i \rangle = \frac{\sqrt{a}}{3}, \quad \langle x_\rho \rangle = \frac{\sqrt{b}}{3}, \quad z_{i\rho} = 0$$

Target space is a point.

Phase II: Orbifold



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

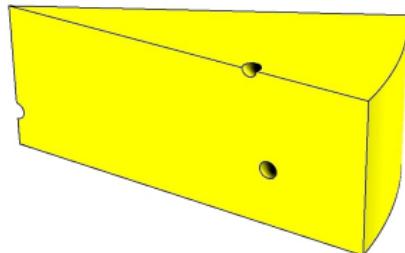
$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$a > 0, b < 0$:

$$c_i = 0, \quad \langle x_\rho \rangle > 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Phase II: Orbifold



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

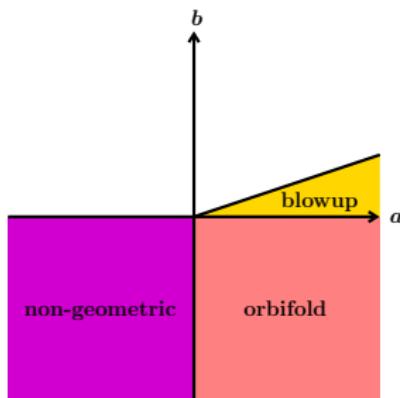
$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$$a > 0, \quad b < 0:$$

$$c_i = 0, \quad \langle x_\rho \rangle > 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Target space is the T^6/\mathbb{Z}_3 orbifold.

Phase III: Blowup



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

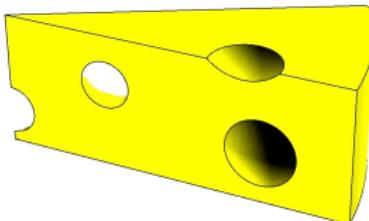
$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$$a > 3b > 0:$$

$$c_i = 0, \quad \langle x_\rho \rangle \geq 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Phase III: Blowup



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

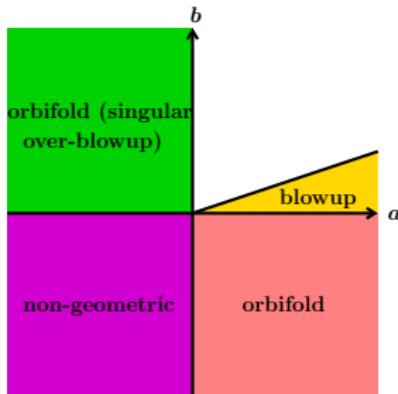
$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$a > 3b > 0$:

$$c_i = 0, \quad \langle x_\rho \rangle \geq 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Target space is the **resolution CY** of the T^6/\mathbb{Z}_3 orbifold.

Phase IV: Singular Over-Blowup



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

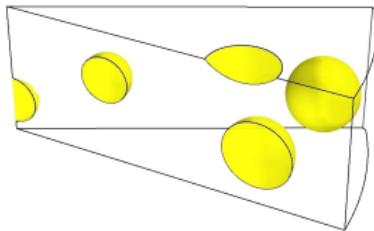
$$a < 0, b > 0:$$

Note complete symmetry of the model under

$$x_\rho \leftrightarrow c_i, z_{i\rho} \leftrightarrow z_{\rho i}, a \leftrightarrow b$$

$$\langle c_i \rangle > 0, \quad x_\rho = 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Phase IV: Singular Over-Blowup



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$$a < 0, b > 0:$$

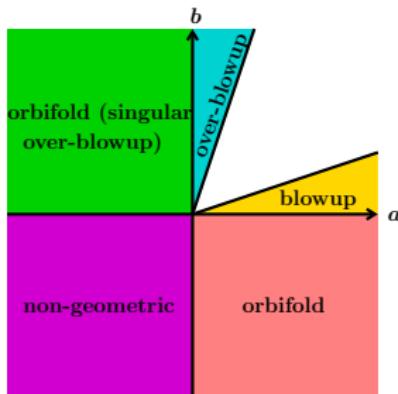
Note complete symmetry of the model under

$$x_\rho \leftrightarrow c_i, z_{i\rho} \leftrightarrow z_{\rho i}, a \leftrightarrow b$$

$$\langle c_i \rangle > 0, \quad x_\rho = 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Target space again T^6/\mathbb{Z}_3 orbifold, with x and c exchanged.

Phase V: Over-Blowup



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

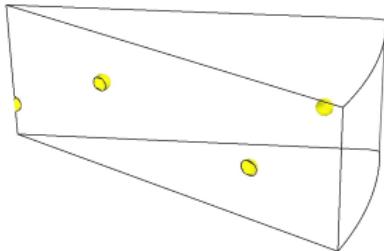
$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$$b > 3a > 0:$$

$$\langle c_i \rangle \geq 0, \quad x_\rho = 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Phase V: Over-Blowup



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

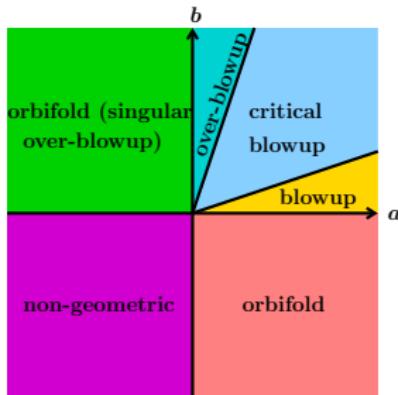
$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$b > 3a > 0$:

$$\langle c_i \rangle \geq 0, \quad x_\rho = 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Target space is the **resolution CY** of the “other” T^6/\mathbb{Z}_3 orbifold.

Phase VI: Critical Blowup



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

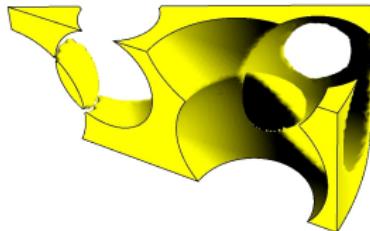
$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$$a > 0, \quad b \in \left[\frac{a}{3}, 3a \right]:$$

$$\langle c_{i \neq \rho} \rangle \geq 0, \quad \langle x_\rho \rangle \geq 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Phase VI: Critical Blowup



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

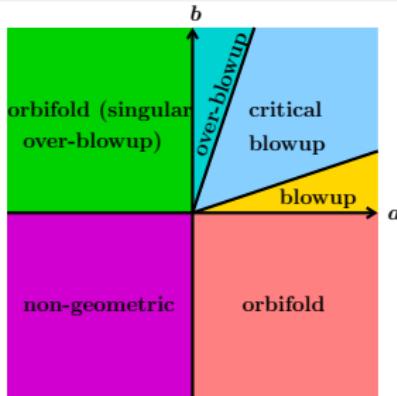
$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

$$a > 0, \quad b \in \left[\frac{a}{3}, 3a \right]:$$

$$\langle c_{i \neq \rho} \rangle \geq 0, \quad \langle x_\rho \rangle \geq 0, \quad \langle z_{i\rho} \rangle \geq 0$$

Target space is **hybrid phase** with blowup limits for $b \downarrow \frac{a}{3}$ & $b \uparrow 3a$.

Summary



Superpotential:

$$\mathcal{W} = \sum_{i,\rho} c_i z_{i\rho}^3 x_\rho$$

D-terms:

$$\sum_{\rho=1}^3 |z_{i\rho}|^2 - 3|c_i|^2 = a$$

$$\sum_{i=1}^3 |z_{i\rho}|^2 - 3|x_\rho|^2 = b$$

Note that in general

- The **dimension** of the **TS** **can jump** between the phases
- There can be **flop-transitions** also “outside” the **CY**
- There can be several **distinct singular phases** [Aspinwall, Greene, Morrison, Plesser, ...]

There is a vast (moduli) space to be explored!

Conclusion

GLSMs can be used to describe different compactification spaces for string **model building**.

Conclusion

GLSMs can be used to describe different compactification spaces for string **model building**.

Can **probe** entire **moduli space**. Access to **new phases** which exhibit **interesting phenomena**.

Conclusion

GLSMs can be used to describe different compactification spaces for string **model building**.

Can **probe** entire **moduli space**. Access to **new phases** which exhibit **interesting phenomena**.

Future work: **Study** what happens to the **gauge bundle** in $(2,0)$ models when going to **different phases**.

Conclusion

GLSMs can be used to describe different compactification spaces for string **model building**.

Can **probe** entire **moduli space**. Access to **new phases** which exhibit **interesting phenomena**.

Future work: **Study** what happens to the **gauge bundle** in $(2,0)$ models when going to **different phases**.

Thank you for your attention!