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Motivation

Popular heterotic compactification spaces for model building:

@ Orbifolds [Blaszczyk, Buchmiiller, Groot Nibbelink, Hamaguchi, Kim, Kyae,
Lebedev, Nilles, Quevedo, Raby, Ramos-Sanchez, Ratz, FR, Trapletti,
Vaudrevange, Wingerter, .. .]

o Calabi—Yaus with vector/line bundles [Anderson, Blaszczyk,
Bouchard, Braun, Cabo Bizet, Donagi, Groot Nibbelink, Gray, Ha, Held,
Honecker, Klevers, Lukas, Nilles, Ovrut, Palti, Pantev, Ploger, FR, Trapletti,
Vaudrevange, Waldram, Walter, .. .]

@ Free fermionic constructions [Faraggi, Nanopoulos, Yuan, ...]

] Gepner Models [Dijkstra, GatoRivera, Huiszoon, Schellekens, .. .]
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Our approach:
e Start with orbifold where theory is well under control (CFT
description)
@ Try to map the theory to a smooth CY space via blowup
procedure
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Our approach:
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procedure

Effort to match the theories:

@ On the level of anomalies
[Blaszczyk, Cabo Bizet, Groot Nibbelink, Nilles, FR, Trapletti]

@ On the level of GLSMs [Groot Nibbelink]

Motivated by this, we worked out in [1111.5852] the GLSM
description of orbifold resolutions. To our surprise, we found more
than just the orbifold and the blowup phase ~~ this talk




O Orbifolds and GLSMs
@ Example T°/7Z3: GLSM resolution

© Exploring the moduli space



Orbifolds and GLSMs Definition

Toroidal Orbifold [Dixon,Harvey,Vafa,Witten,. . . ]

@ Underlying compactification spaces are (products of) tori
@ Complex structure s.t. space has additional symmetries

e Dividing out these symmetries produces a space with
singularities at the fixed points
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Toroidal Orbifold [Dixon,Harvey,Vafa,Witten,. . . ]

@ Underlying compactification spaces are (products of) tori
@ Complex structure s.t. space has additional symmetries

e Dividing out these symmetries produces a space with
singularities at the fixed points

Gauged linear sigma models [Wwitten]

e Here: N = (2,2) gauge theory with GG U(1)" on 2D WS
The fields on the WS correspond to coordinates in TS
The U(1) charges correspond to weights of toric spaces
The F-terms cut out the target space manifold (here: CY)
The D—terms specify the geometric phase of the theory

e 6 66 o o

The Fl-parameters correspond to Kdhler moduli
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s Construction in free CFT picture
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Example T° /Z3 Construction in GLSM picture

Probing the moduli space

© Start with 3 two—tori with complex structure 7 = e27//3
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Example TG/ Z3 Construction in GLSM picture

Probing the moduli space

[ UQ)'s [| z11 z12 z13| 221 Z22 223 z31 732 233 c1 C2 C3 |

R1 1 1 1 0 0 0 0 0 0|-300
R> 0 0 O 1 1 1 0 0 0| O0-30
R3 0 0 0 0 0 0 1 1 1 0 0-3

F—terms for ¢; and z;,:

zind+zp3 4+ 233 =0, i=1,2,3,
cizi)? =0, i,p=1,23
D—terms:

|zi1|? + |zi2|? + |2i3]* — 3|ci]? = ai, i=1,2,3
Geometry:

aj: sizes of tori

aj > 0 = at least 3 z; ,# 0 = ¢; = 0 (assume this case for now)
Zi1, Zi», z3: coordinate of ith torus



Construction in free CFT picture
/

Example TG/ Z3 Construction in GLSM picture

Probing the moduli space

[ UQ)'s | z11 z120 z13] 221 220 223 | z31 Z32 733| c1 2 3| x|

) T 1 1] 0 0 0] 0 0 0] 300] 0

R 00 0| 11 1| 0000|0300

Rs 00 0| 000|111 1| 00-3/0

= 1 0 0 1 0 0 1 0 0] 00O0] -3
F-terms for ¢;:

Zx+z25+23=0 i=1,2,3
11 i2 i3 ) )&y
D—terms:
2 2 2 .
|zi1|* + |zi2|” + |zi3|” = ai, i=1,2,3

2112+ |21 + |z21]* = 3> = b

Geometry: [Aspinwall, Plesser]

by: sizes of exceptional cycles

b < 0= X1750 = <X1> breaks £1 to Z3 with 27 FP z;1 =21 =231 =0
b1 >0= FP z11=201=231=0 forbidden = smooth



Construction in free CFT picture
Example TG/E3 Construction in GLSM picture
Probing the moduli space

) T 1 1] 0 0 0] 0 0 0] 300]000
R 00 0|11 1| 000/ 030/{000
Rs 00 0| 000|111 1/00-3000
= 1 0 0 1 0 0 1 0 0/ 00O0|-300
E> 01 0 01 0 01 0{00O0| 0-30
E; 00 1/ 001/ 001|000/ 00-3

F-terms for ¢;:

Zxi+zhx +z5x3 =0, i=1,2,3

D—terms:
1z | + |z |2 + |zi3|* = ai =123

|le|2+|Z2p|2+|z3p|2_3|xp|2 = bpa p=1,23
Geometry:
(x1) #0 generates Z3 with FP z11 =201 =231 =0

(x2) #0 generates Z3 with FP zjo=2zp=2730=0 } 3 x 9 fixed points
<X3> #0 generates Zs3 with FP zi3 =23 =233=0



Construction in free CFT picture
Example TG/E3 Construction in GLSM picture

Probing the moduli space

General procedure:

To build an orbifold/resolution GLSM model
© Choose toric description appropriate for orbifold action
@ Introduce exceptional divisors to smoothen the singularities

© Set Fl parameters a > 0 > b to study orbifold or a>> b >0
to study blowup

@ Construct inherited divisors and linear equivalences

@ Read off intersection numbers

In this way, the resolution phase can be studied using a GLSM
which can be smoothly connected to the orbifold.

The procedure confirms the results of previous approaches which
proceeded via polytopes and gluings. [Lust,Reffert,Scheidegger,Stieberger]



Construction in free CFT picture
Example TG/E3 Construction in GLSM picture
Probing the moduli space

Probing the Moduli Space

But we can do more! Having a GLSM realization, we can probe
whole moduli space by simply varying FI parameter.
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Probing the Moduli Space

But we can do more! Having a GLSM realization, we can probe
whole moduli space by simply varying FI parameter.

Can answer question

What happens to a swiss cheese when the holes are bigger than
the cheese?




Construction in free CFT picture
Example TG/E3 Construction in GLSM picture
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Probing the Moduli Space

But we can do more! Having a GLSM realization, we can probe
whole moduli space by simply varying FI parameter.

[ UQ)'s || z11 z12 z13] 221 222 203 ] 731 732 z33] c1 2 @3] x1 x2 X3 |
R1 1 1 1 0 0 O 0 0 O 300 000
R> 0 0 0 1 1 1 0 0 0 0-30 000
R3 0 0 O 0 0 O 1 1 1 00-3] 000
Ey 1 0 0 1 00 1 0 0[] 00O0|-300
E> 010 010 01 0j00O0| 0-30
E3 0 0 1 0 0 1 0 0 1 000| 00O0-3

Superpotential:

W = th C,-zl?’pxp

D—terms:

Yo i lzpP=3lGP=a, i=123
Sz =3I =b,, p=1,2,3

For simplicity: Set a; = a and b, = b.



Construction in free CFT picture
Example T6/E3 Construction in GLSM picture
Probing the moduli space

Phase |: Non-Geometric Regime

b
Superpotential:
W:Zi,p C,'Z?po
a D—terms:

Zzzl‘zip’2_3|ci P=a
i1 |zipP =32 =b

a<0, b<O:

(@) =%, (p)="P  z,=0
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Example TG/E3 Construction in GLSM picture
Probing the moduli space

Phase |: Non-Geometric Regime

Superpotential:
W:Z,’p C;z?pxp
D—terms:

>3 lzipl2 =3l P =a
Yoiy lzipl2=3lx P =b

a<0,b<:
(@) =%, (e ="  z,=0
Target space is a point. |




Construction in free CFT picture
Example T6/E3 Construction in GLSM picture
Probing the moduli space

Phase |I: Orbifold

b
Superpotential:
W= Zi,p C,-z?pxp
a D—terms:
3
orbifold Zgzl‘zfp’2_3|ci ‘2:‘9
> i1 |Zip|2 —3‘Xp\2 =b
a>0,b<0:
¢ =0, (xp) >0, (zip) >0



Construction in free CFT picture
Example TG/E3 Construction in GLSM picture
Probing the moduli space

Phase |I: Orbifold

Superpotential:
W:Z,’p C;z?pxp
D—terms:

>3 lzipl2-3lci?=a
iy lzipl2=3lx P =b

a>0,b<0:
¢ =0, (xp) >0, (zip) >0
Target space is the T°/Zj3 orbifold. J




Construction in free CFT picture
Example T6/E3 Construction in GLSM picture
Probing the moduli space

Phase IlI: Blowup

Superpotential:
W:Zi,p C,-z?pxp

a D—terms:
>3 lzip)2 -3l P =a
Yoiy lzipl2—=3lx P =b

blowup

orbifold

a>3b>0:

¢ =0, (xp) >0, (zip) >0



Construction in free CFT picture
Example TG/E3 Construction in GLSM picture
Probing the moduli space

Phase IlI: Blowup

Superpotential:
W:Zi,p C;z?pxp
D—terms:

2,3;:1 ‘Zipyz —3|ci[P=a
S lzipl? =3l P = b

a>3b>0:
¢ =0, (xp) >0, (zip) >0
Target space is the resolution CY of the T°/Z3 orbifold. )




Construction in free CFT picture
Example T6,,"E3 Construction in GLSM picture
Probing the moduli space

Phase 1V: Singular Over-Blowup

Superpotential:
W:ZW c,-zl-?’pxp
D—-terms:
Soilzip?=3lci[P=a
Z?:l |Zip|2*3‘xp|2 =b

blowup

orbifold

a<0, b>0:

Note complete symmetry of the model under
Xp <7 Ciy Zjp <7 Zpj, A <7 b
<C,'> >0, Xp = 0, <Z,'p> >0



Construction in free CFT picture
Example TG/E3 Construction in GLSM picture
Probing the moduli space

Phase 1V: Singular Over-Blowup

Superpotential:
W:Z,’p C;z?pxp
D—terms:

S lzipl2 =3P =a
Yoiy lzipl2=3lxP=b

a<0, b>0:

Note complete symmetry of the model under
Xp <7 Ciy Zjp <7 Zpj, A <7 b
<C,'> >0, Xp = 0, <Z,'p> >0

Target space again T°/Z3 orbifold, with x and ¢ exchanged. J




Construction in free CFT picture
Example T6,,"E3 Construction in GLSM picture
Probing the moduli space

Phase V: Over-Blowup

Superpotential:
W:ZW c,-z,-?’pxp
D—-terms:
Soilzip?=3lci[P=a
Z?:l |Zip|2*3‘xp|2 =b

orbifold

b>3a>0:
(ci) >0, x, =0, (zip) >0



Construction in free CFT picture
Example TG/E3 Construction in GLSM picture
Probing the moduli space

Phase V: Over-Blowup

Superpotential:
W:Z,’p C;z?pxp
D—terms:

>3 lzip)2 =3P =a
Yoiy lzipl2=3lx P =b

b>3a>0:

(ci) >0, x, =0, (zip) >0

Target space is the resolution CY of the “other” T°/Zj3 orbifold. |




Example TS /Z3

Phase VI: Critical Blowup

critical

blowup

orbifold

a>0,be [%,33]:

Construction in free CFT picture
Construction in GLSM picture
Probing the moduli space

Superpotential:
W:ZW c,-zl-?’pxp
D—-terms:
Soilzip?=3lci[P=a
Z?:l |Zip|2*3‘xp|2 =b

(Cizp) =0, (xp) >0, (zip) 20



Construction in free CFT picture
Example TG/E3 Construction in GLSM picture

Probing the moduli space

Phase VI: Critical Blowup

Superpotential:
W:Z,’p C;z?pxp
D—terms:

>3 lzipl2-3lci?=a
Yoiy lzipl2=3lxP=b

a>0,be [%,33]:
(Cizp) =0, (xp) >0, (zip) > 0

Target space is hybrid phase with blowup limits for b | £ & b 1 3a.J




Construction in free CFT picture
Example T6,,"E3 Construction in GLSM picture
Probing the moduli space

Summary

izl Superpotential:

e W=3", c;z?pxp
D—terms:
>p-ilzip =3l P =a
i |2ipl* =31x, P =b

orbifold

Note that in general
@ The dimension of the TS can jump between the phases
@ There can be flop-transitions also “outside” the CY

@ There can be several distinct singular phases [Aspinwall, Greene,

Morrison, Plesser, ...]

There is a vast (moduli) space to be explored! ]
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GLSMs can be used to describe different compactification spaces
for string model building. J
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Conclusion

Conclusion

GLSMs can be used to describe different compactification spaces
for string model building.

Can probe entire moduli space. Access to new phases which
exhibit interesting phenomena.

Future work: Study what happens to the gauge bundle in (2,0)
models when going to different phases.

Thank you for your attention!
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