Exercises on Theoretical Particle Physics

Prof. Dr. H.-P. Nilles

-Home Exercises-
 Due 22. October 2010

H1.1 The Lorentz group

$1+2+3+3+1=10$ points
The Lorentz group is defined as the set of transformations

$$
x^{\mu} \rightarrow \Lambda_{\nu}^{\mu} x^{\nu}
$$

which leave the scalar product $\langle x, y\rangle=\eta_{\mu \nu} x^{\mu} y^{\nu}$ invariant.
(a) Show that an element λ of the Lie algebra of the Lorentz group satisfies:

$$
\lambda^{T}=-\eta \lambda \eta .
$$

Hint: Reformulate the statement about the invariance of the scalar product in $\eta_{\mu \nu}=\eta_{\rho \sigma} \Lambda^{\rho}{ }_{\mu} \Lambda^{\sigma}{ }_{\nu}$ and write an element of the Lorentz group as $\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}-i \lambda^{\mu}{ }_{\nu}$.
(b) Choose

$$
\left(M^{\mu \nu}\right)^{\rho}{ }_{\sigma}=\mathrm{i}\left(\eta^{\mu \rho} \delta^{\nu}{ }_{\sigma}-\eta^{\nu \rho} \delta^{\mu}{ }_{\sigma}\right)
$$

as a basis for the Lie algebra. What do these matrices look like? Describe the form of the matrices in words. Verify the commutation relations

$$
\left[M^{\mu \nu}, M^{\rho \sigma}\right]=-\mathrm{i}\left(\eta^{\mu \rho} M^{\nu \sigma}-\eta^{\mu \sigma} M^{\nu \rho}-\eta^{\nu \rho} M^{\mu \sigma}+\eta^{\nu \sigma} M^{\mu \rho}\right)
$$

(c) We split the generators into two groups:

$$
J^{i}=\frac{1}{2} \epsilon^{i j k} M^{j k}, \quad K^{i}=M^{0 i}
$$

The J's have only spatial indices, the K 's have spatial and timelike indices. Verify the commutation relations

$$
\left[J^{i}, J^{j}\right]=\mathrm{i} \epsilon^{i j k} J^{k}, \quad\left[J^{i}, K^{j}\right]=\mathrm{i} \epsilon^{i j k} K^{k}, \quad\left[K^{i}, K^{j}\right]=-\mathrm{i} \epsilon^{i j k} J^{k}
$$

and describe the meaning of each relation in words. What kind of transformations do the J 's and K 's correspond to?
(d) The form of the commutation relations for the Lorentz algebra can still be simplified. Define

$$
T_{\mathrm{L} / \mathrm{R}}^{i}=\frac{1}{2}\left(J^{i} \pm \mathrm{i} K^{i}\right)
$$

and verify the commutation relations

$$
\left[T_{\mathrm{L}}^{i}, T_{\mathrm{L}}^{j}\right]=\mathrm{i} \epsilon^{i j k} T_{\mathrm{L}}^{k}, \quad\left[T_{\mathrm{R}}^{i}, T_{\mathrm{R}}^{j}\right]=\mathrm{i} \epsilon^{i j k} T_{\mathrm{R}}^{k}, \quad\left[T_{\mathrm{L}}^{i}, T_{\mathrm{R}}^{j}\right]=0
$$

(e) Classify the representations of the Lorentz algebra using what you learned about $\mathfrak{s u}(2)$.

Conclusion: Every representation of the Lorentz algebra can be characterized by two non-negative integers or half-integers $\left(j_{\mathrm{L}}, j_{\mathrm{R}}\right)$.

H 1.2γ-Matrix identities

The following exercise is to be solved by only using the Clifford algebra of the γ-matrices and not a particular representation. For convenience we introduce the notation

$$
\gamma^{5}=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

(a) Show that

$$
\left(\gamma^{5}\right)^{\dagger}=\gamma^{5}, \quad\left(\gamma^{5}\right)^{2}=\mathbb{1}, \quad\left\{\gamma^{5}, \gamma^{\mu}\right\}=0
$$

(b) Prove the following trace theorems.

$$
\begin{aligned}
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu}\right) & =4 \eta^{\mu \nu} \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right) & =4\left(\eta^{\mu \nu} \eta^{\rho \sigma}-\eta^{\mu \rho} \eta^{\nu \sigma}+\eta^{\mu \sigma} \eta^{\nu \rho}\right) \\
\operatorname{tr}\left(\gamma^{\mu_{1}} \ldots \gamma^{\mu_{n}}\right) & =0, \quad \text { for } n \text { odd } \\
\operatorname{tr} \gamma^{5} & =0 \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{5}\right) & =0 \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right) & =-4 \mathrm{i}^{\mu \nu \rho \sigma}
\end{aligned}
$$

Hint: Use the cyclicity of the trace.
(c) Show the following contraction identities:

$$
\begin{aligned}
\gamma^{\mu} \gamma_{\mu} & =4 \cdot \mathbb{1} \\
\gamma^{\mu} \gamma^{\nu} \gamma_{\mu} & =-2 \gamma^{\nu} \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu} & =4 \eta^{\nu \rho} \mathbb{1} \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{\mu} & =-2 \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu}
\end{aligned}
$$

