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H 2.1 Weyl spinors 1+1+1+2+1+2+1+1+1+0.5+1=12.5 points

As you have probably realized the Lorentz transformation on Minkowski space is given by

Λ = exp

(
− i

2
ωµνM

µν

)
.

In exercise H 1.1 we have defined the Lorentz algebra through

[Mµν ,Mρσ] = −i (ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) .

Here we would like to investigate its representations. To make this point clear we write
D(Λ) instead of Λ.

(a) Using the notation of exercise H 1.1 we define ~α, ~β through ωij = εijkαk and βi = ω0i.
Show

D(Λ) = exp
(
−i
[
~α · ~J + ~β · ~K

])
,

= exp
(
−i
[
~α− i~β

]
· ~TL

)
exp

(
−i
[
~α + i~β

]
· ~TR

)
.

Note that T iL, T iR are still unspecified; we only know their algebra. For a particular
representation one has to make a choice!

(b) Specialize to a particular representation: choose the T iL, T iR to be the Pauli matrices.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1)

The simplest representations of the Lorentz group are (1/2, 0) and (0, 1/2). An object
transforming in the (1/2, 0) is called a left-chiral Weyl spinor. The definition of a
right-handed Weyl spinor is analogous.
How many entries does a Weyl spinor have? Write down the transformation laws for
the two types of Weyl spinors.
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(c) We want to rewrite the transformation laws for Weyl spinors under Lorentz transfor-
mations in the standard notation:

D(Λ) = exp

(
− i

2
ωµνM

µν

)
.

Therefore, we generalize the Pauli matrices eq. (1) to

σµ :=
(
1, σi

)
, σµ :=

(
1,−σi

)
.

Furthermore we define the following quantities:

σµν :=
i

4

(
σµ σν − σν σµ

)
, σµν :=

i

4

(
σµ σν − σν σµ

)
.

We denote the left-chiral Weyl spinor (1/2, 0) by ΨL and the right-chiral Weyl spinor
(0, 1/2) by ΨR. Let DL, DR denote the transformation matrices for the left- and
right-chiral Weyl spinors. Show that the Weyl spinors transform as

ΨL 7−→ exp

(
− i

2
ωµν σ

µν

)
ΨL ,

ΨR 7−→ exp

(
− i

2
ωµν σ

µν

)
ΨR

Hint: Rewrite the K’s and J ’s using the definitions TL and TR from exercise sheet 1.
Express Mµν in terms of K’s and J ’s. Then identify the components of σµν and σµν

with the components of Mµν.

(d) Prove the following equations:

D−1
L = D†R ,

σ2DL σ2 = D∗R ,

σ2 = (DL)T σ2DL .

Comparing the last equation to η = ΛTηΛ, we find that σ2 acts as a metric on the
space of the spinor components!

(e) Show that σ2Ψ
∗
L transforms in the (0, 1/2) representation and σ2Ψ

∗
R transforms in the

(1/2, 0) representation.

(f) Let ΨL, ΨR, ΦL and ΦR be Weyl spinors. Show that the following expressions are
invariant under Lorentz transformations:

i (ΦL)T σ2 ΨL ,

i (ΦR)T σ2 ΨR ,

Φ†RΨL ,

Φ†LΨR .

(g) Choose ΦL = ΨL and compute i(ΨL)Tσ2 ΨL. What can you conclude about spinor
components?
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(h) Show that the parity operator acts as follows on the generators of the Lorentz algebra:

J i 7−→ J i , Ki 7−→ −Ki .

Hint: Use Mµν 7→ Λµ
ρΛ

ν
σM

ρσ, where Λ is now the parity operator.

(i) Show that under parity transformations a representation (m,n) of the Lorentz algebra
goes to (n,m), e. g. parity maps (1/2, 0) to (0, 1/2). Therefore, if m 6= n, the parity
transformation maps an element of the vector space of the representation to an element
that is not part of the vector space.

(j) Show that the dimension of the representation (m,n) is (2m+ 1) · (2n+ 1).

(k) Show that the 4 dim. Minkowski space is the vector space of the (1/2, 1/2) represen-
tation.
Hint: Use the fact that parity maps a 4-vector to a 4-vector, i. e. you do not leave the
Minkowski space if you act with parity operator.

H 2.2 Dirac spinors 1+1+1+1+1+1.5+1+0.5+2.5=10.5 points

Since the vector spaces of the left- and right-chiral Weyl spinors are not mapped to them-
selves under parity, we consider the following (reducible) representation of the Lorentz
algebra (1/2, 0) ⊕ (0, 1/2). In other words: we take a left-chiral Weyl spinor ΨL and
a right-chiral Weyl spinor ΦR and take them as the components of a new 4-component
spinor, called the Dirac spinor

Ψ =

(
ΨL

ΦR

)
.

Note: We can write the Dirac spinor as two Weyl spinors in this easy way only when we
use the chiral representation of the Clifford algebra.

(a) Show that the Dirac spinor transforms under a Lorentz transformation as

Ψ 7−→ Ψ′ = DΨ = exp

(
− i

2
ωµνγ

µν

)
Ψ ,

with γµν := i
4
[γµ, γν ] and γµ in the Weyl representation.

γµ =

(
0 σµ

σ̄µ 0

)
Here D denotes a representation of the proper Lorentz group i. e. det Λ = +1 and
Λ0

0 ≥ 1. This part of the full Lorentz group contains the identity and can therefore
be expressed by the exponential function.

(b) Prove the following equation

[γµ, γνσ] = (Mνσ)µρ γ
ρ . (2)
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(c) Derive

D−1γµD = Λµ
νγ

ν . (3)

Hint: Use infinitesimal transformations D ≈ 1− i
2
ωµνγ

µν and Λµ
ν ≈ δµν − i

2
ωρσ(Mρσ)µν

as well as eq. (2).

(d) Show that in the chiral representation the chirality operator γ5 := iγ0γ1γ2γ3 can be
written as

γ5 =

(
−1 0
0 1

)
.

and prove that [γ5,D] = 0

(e) Show that the following operators are a complete set of projection operators
(i. e. P 2 = P , PLPR = 0, PL + PR = 1).

PL =
1

2

(
1− γ5

)
, PR =

1

2

(
1 + γ5

)
.

what is their action on a Dirac spinor (in the chiral representation)?

(f) Show that

D† = γ0D−1γ0 ,

and from this that follows

Ψ̄ 7−→ Ψ̄D−1 ,

where Ψ̄ = Ψ†γ0.

(g) Consider the parity operator DP , i. e. (ΛP )0
0 = 1 and (ΛP )i i = −1. Show that one

representation of the parity operator is

DP = γ0 . (4)

Hint: Use eq. (3).

(h) Examine the action of the parity operator eq. (4) on a Dirac spinor in the chiral rep-
resentation.

(i) Now we would like to analyze the list of five bilinear covariants. Check the covariance
and the behavior under parity:

scalar Ψ̄Ψ

vector Ψ̄γµΨ

tensor Ψ̄γµνΨ

pseudo-scalar Ψ̄γ5Ψ

pseudo-vector Ψ̄γ5γµΨ
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