Exercises on String Theory I

Prof. Dr. H.P. Nilles

-Home Exercises-

Due 15. November 2011

Exercise 3.1: Convergence of the Zeta Function

10 Credits
To calculate the normal ordering constant a in the vacuum energy in the canonical quantization of a string theory, one finds series corresponding to certain values of the Hurwitz zeta funcion $\zeta(s, b)$. In this exercise we perform analytic manipulations to compute the values of $\zeta(s, b)$ at the points of interest. First of all we define

$$
\begin{equation*}
\zeta(s, b)=\sum_{n=0}^{\infty} \frac{1}{(n+b)^{s}} . \tag{1}
\end{equation*}
$$

1. Show the following identities:

$$
\begin{align*}
\frac{1}{\nu^{s}} & =\frac{1}{\Gamma(s)} \int_{0}^{\infty} e^{-\nu t} t^{s-1} \mathrm{~d} t, \quad \text { with } \quad \Gamma(s):=\int_{0}^{\infty} e^{-t} t^{s-1} \mathrm{~d} t \tag{2}\\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(b+k)^{1-s} & =\frac{1}{\Gamma(s-1)} \int_{0}^{\infty} e^{-b t}\left(1-e^{-t}\right)^{n} t^{s-2} \mathrm{~d} t \tag{3}\\
\sum_{n=0}^{\infty} \frac{\left(1-e^{-t}\right)^{n}}{n+1} & =\frac{t}{1-e^{-t}} . \tag{4}
\end{align*}
$$

2. Use the formulae above to show that

$$
\begin{equation*}
\zeta(s, b)=\frac{1}{s-1} \sum_{n=0}^{\infty} \frac{1}{n+1} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(b+k)^{1-s} . \tag{5}
\end{equation*}
$$

3. Show that

$$
\begin{equation*}
\zeta(-1, b)=-\frac{b(b-1)}{2}-\frac{1}{12} . \tag{6}
\end{equation*}
$$

In particular we get $\zeta(-1,0)=-\frac{1}{12}$.
Hint: $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{l}$ vanishes for $0 \leq l<n$

In D dimensions, the Clifford algebra is given by D matrices Γ^{μ} which satisfy

$$
\left\{\Gamma^{\mu}, \Gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbb{1} .
$$

Here, $\mu=0, \ldots, D-1$ and $\eta=\operatorname{diag}(-,+, \ldots,+)$.

1. Show that the matrices

$$
\Sigma^{\mu \nu}=\frac{\mathrm{i}}{4}\left[\Gamma^{\mu}, \Gamma^{\nu}\right]
$$

form a representation of the Lorentz algebra.

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=\left(\mathrm{i} \eta^{\mu \rho} J^{\nu \sigma}-(\mu \leftrightarrow \nu)\right)-(\rho \leftrightarrow \sigma) .
$$

This representation is called spinor representation, and the elements of the representation space are (Dirac) spinors.
2. Define a new matrix Γ_{*} by

$$
\Gamma_{*}=\mathrm{i}^{\alpha} \Gamma^{0} \cdots \Gamma^{D-1}
$$

α is a parameter to be determined later. Show that Γ_{*} (anti)commutes with the Γ^{μ},

$$
\left\{\Gamma_{*}, \Gamma^{\mu}\right\}=0 \quad \text { for } D \text { even }, \quad\left[\Gamma_{*}, \Gamma^{\mu}\right]=0 \quad \text { for } D \text { odd }
$$

(Note that this implies that for odd D, Γ_{*} is a multiple of the unit matrix.)
Show that $\Gamma_{*}^{2} \sim \mathbb{1}$, and find (for even D) an α such that $\Gamma_{*}^{2}=\mathbb{1}$.
(2 credits)
3. For even D, define the operators $P_{ \pm}=\frac{1}{2}\left(1 \pm \Gamma_{*}\right)$. Verify that they form a complete set of orthogonal projectors. These projectors define right- and left-chiral (Weyl) spinors.
Prove that the representation of the Lorentz group by the generators $\Sigma^{\mu \nu}$ is reducible. To do so, show that it splits into two mutually commuting representations generated by the chiral generators $\Sigma_{+}^{\mu \nu}=\Sigma^{\mu \nu} P_{+}$and $\Sigma_{-}^{\mu \nu}$.
(2 credits)
4. Consider a spinor $\psi=\left(\psi_{1}, \psi_{2}\right)^{T}$ in $D=2$. The Γ matrices are given by

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \quad \gamma^{1}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) .
$$

Find the Lorentz generator Σ^{01}. Determine the action of the Lorentz group by $\exp \left\{\mathrm{i} \omega_{01} \Sigma^{01}\right\}$ on ψ, where ω_{01} is a real parameter. How does the Lorentz group act on the chiral components of the spinor?
(2 credits)
5. A Majorana condition is a reality condition on the spinor of the form

$$
\psi^{*}=B \psi
$$

with some invertible matrix B. Show that consistency requires $B B^{*}=1$ and $B \Sigma^{01} B^{-1}=-\Sigma^{01^{*}}$.
Find a matrix B that works and show that it is compatible with chirality, i.e. that the reality condition can be imposed on the chiral components.
(2 credits)

