Exercises on String Theory I

Prof. Dr. H.P. Nilles

-Home Exercises-Due 15. November 2011

Exercise 3.1: Convergence of the Zeta Function

To calculate the normal ordering constant a in the vacuum energy in the canonical quantization of a string theory, one finds series corresponding to certain values of the Hurwitz zeta function $\zeta(s, b)$. In this exercise we perform analytic manipulations to compute the values of $\zeta(s, b)$ at the points of interest. First of all we define

$$\zeta(s,b) = \sum_{n=0}^{\infty} \frac{1}{(n+b)^s} \,. \tag{1}$$

1. Show the following identities:

$$\frac{1}{\nu^s} = \frac{1}{\Gamma(s)} \int_0^\infty e^{-\nu t} t^{s-1} \mathrm{d}t \,, \quad \text{with} \quad \Gamma(s) := \int_0^\infty e^{-t} t^{s-1} \mathrm{d}t \,, \quad (2)$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (b+k)^{1-s} = \frac{1}{\Gamma(s-1)} \int_{0}^{\infty} e^{-bt} \left(1 - e^{-t}\right)^n t^{s-2} \mathrm{d}t \,, \tag{3}$$

$$\sum_{n=0}^{\infty} \frac{(1-e^{-t})^n}{n+1} = \frac{t}{1-e^{-t}}.$$
(4)

 $(3 \ credits)$

2. Use the formulae above to show that

$$\zeta(s,b) = \frac{1}{s-1} \sum_{n=0}^{\infty} \frac{1}{n+1} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (b+k)^{1-s} .$$
 (5)

 $(4 \ credits)$

3. Show that

$$\zeta(-1,b) = -\frac{b(b-1)}{2} - \frac{1}{12}.$$
(6)

In particular we get $\zeta(-1,0) = -\frac{1}{12}$. *Hint:* $\sum_{k=0}^{n} (-1)^{k} {n \choose k} k^{l}$ vanishes for $0 \le l < n$ (3 credits)

10 Credits

Exercise 3.2: Gamma Matrices

10 Credits

In D dimensions, the Clifford algebra is given by D matrices Γ^{μ} which satisfy

$$\{\Gamma^{\mu}, \Gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbb{1}$$

Here, $\mu = 0, ..., D - 1$ and $\eta = \text{diag}(-, +, ..., +)$.

1. Show that the matrices

$$\Sigma^{\mu\nu} = \frac{i}{4} \left[\Gamma^{\mu}, \Gamma^{\nu} \right]$$

form a representation of the Lorentz algebra.

$$[J^{\mu\nu}, J^{\rho\sigma}] = (\mathrm{i}\eta^{\mu\rho}J^{\nu\sigma} - (\mu \leftrightarrow \nu)) - (\rho \leftrightarrow \sigma) \,.$$

This representation is called spinor representation, and the elements of the representation space are (Dirac) spinors. (2 credits)

2. Define a new matrix Γ_* by

$$\Gamma_* = \mathrm{i}^{\alpha} \Gamma^0 \cdots \Gamma^{D-1}$$

 α is a parameter to be determined later. Show that Γ_* (anti)commutes with the Γ^{μ} ,

$$\{\Gamma_*, \Gamma^\mu\} = 0$$
 for D even, $[\Gamma_*, \Gamma^\mu] = 0$ for D odd.

(Note that this implies that for odd D, Γ_* is a multiple of the unit matrix.)

Show that $\Gamma^2_* \sim \mathbb{1}$, and find (for even D) an α such that $\Gamma^2_* = \mathbb{1}$. (2 credits)

3. For even D, define the operators $P_{\pm} = \frac{1}{2} (1 \pm \Gamma_*)$. Verify that they form a complete set of orthogonal projectors. These projectors define right- and left-chiral (Weyl) spinors.

Prove that the representation of the Lorentz group by the generators $\Sigma^{\mu\nu}$ is reducible. To do so, show that it splits into two mutually commuting representations generated by the chiral generators $\Sigma^{\mu\nu}_{+} = \Sigma^{\mu\nu}P_{+}$ and $\Sigma^{\mu\nu}_{-}$. (2 credits)

4. Consider a spinor $\psi = (\psi_1, \psi_2)^T$ in D = 2. The Γ matrices are given by

$$\gamma^0 = \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}, \qquad \qquad \gamma^1 = \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}.$$

Find the Lorentz generator Σ^{01} . Determine the action of the Lorentz group by $\exp\{i\omega_{01}\Sigma^{01}\}$ on ψ , where ω_{01} is a real parameter. How does the Lorentz group act on the chiral components of the spinor? (2 credits)

5. A Majorana condition is a reality condition on the spinor of the form

$$\psi^* = B\psi$$

with some invertible matrix B. Show that consistency requires $BB^* = 1$ and $B\Sigma^{01}B^{-1} = -\Sigma^{01*}$.

Find a matrix B that works and show that it is compatible with chirality, i.e. that the reality condition can be imposed on the chiral components. (2 credits)