# Exercises on String Theory I 

Prof. Dr. H.P. Nilles<br>-Home Exercises-<br>Due 29. November 2011

## Exercise 5.1: String on a Circle

7 Credits
We consider a bosonic string coordinate compactified on a circle. For this we find new boundary conditions of the form

$$
\begin{equation*}
X^{9}(\tau, \sigma+\pi)=X^{9}(\tau, \sigma)+2 \pi R w, \tag{1}
\end{equation*}
$$

where $w \in \mathbb{Z}$ is refered to as the winding number.

1. Show that for single valuedness of $e^{\mathrm{i} X p}$, the momentum $p^{9}$ must be quantized as $p^{9}=k / R$ with $k \in \mathbb{Z}$.
2. Consider the mode expansion of $X^{9}$,

$$
\begin{equation*}
X_{L / R}^{9}\left(\sigma_{ \pm}\right)=x_{L / R}^{9}+p_{L / R}^{9} \sigma_{ \pm}+\text {oscillators } \tag{2}
\end{equation*}
$$

Express the left- and right moving momenta in terms of $k$ and $w$.
(1 credit)
3. Show that the mass condition $M^{2}=M_{L}^{2}+M_{R}^{2}$ and the level matching condition $M_{L}^{2}=M_{R}^{2}$, with $M_{L / R}^{2}=1 / 2 p_{L / R}^{2}+N_{L / R}-1$ become

$$
\begin{align*}
M^{2} & =\frac{m^{2}}{4 R^{2}}+w^{2} R^{2}+N_{L}+N_{R}-2,  \tag{3}\\
0 & =N_{L}-N_{R}+k w . \tag{4}
\end{align*}
$$

4. Determine the massless spectrum. Show that you get additional massless states for $R^{2}=1 / 2$.
5. Show that the transformation $R \leftrightarrow 1 / 2 R, k \leftrightarrow w$ is a symmetry of the spectrum. ( 1 credit )

## Exercise 5.2: String on a Torus

13 Credits
Next, we consider a sigma model of a string compactified on a two-torus. We absorb the radii in the metric such that the boundary conditions become

$$
\begin{equation*}
X^{I}(\tau, \sigma+\pi)=X^{I}(\tau, \sigma)+2 \pi w^{I}, \quad w^{I} \in \mathbb{Z}, \quad I=1,2 \tag{5}
\end{equation*}
$$

Then the action is given by

$$
\begin{equation*}
S=-\frac{1}{2 \pi} \int \mathrm{~d}^{2} \sigma\left(G_{I J} \eta^{\alpha \beta}-B_{I J} \epsilon^{\alpha \beta}\right) \partial_{\alpha} X^{I} \partial_{\beta} X^{J} \tag{6}
\end{equation*}
$$

where we assume constant metric $G_{I J}=G_{J I}$ and Kalb-Ramond field $B_{I J}=-B_{J I}$. Furthermore, $\eta=\operatorname{diag}(-1,1)$ and $\epsilon^{01}=1$.

1. Show that momentum quantization

$$
\begin{equation*}
\mathbb{Z} \ni k_{I}:=\int_{0}^{\infty} p_{I} \mathrm{~d} \sigma, \quad \text { with } \quad p_{I}=\frac{\delta S}{\delta \dot{X}^{I}} \tag{7}
\end{equation*}
$$

together with (5) imply that

$$
\begin{equation*}
p_{L}^{I}=w^{I}+G^{I J}\left(\frac{1}{2} k_{J}-B_{J K} w^{K}\right), \quad p_{R}^{I}=-w^{I}+G^{I J}\left(\frac{1}{2} k_{J}-B_{J K} w^{K}\right) \tag{8}
\end{equation*}
$$

Hint: Expand $X_{L / R}^{I}=x_{L / R}^{I}+p_{L / R}^{I} \sigma_{ \pm}$with neglecting oscillators. $k_{I}=G_{I J}\left(p_{L}^{J}+p_{R}^{J}\right)+$ $B_{I J}\left(p_{L}^{J}-p_{R}^{J}\right)$
(3 credits)
2. Show that the momentum contribution to the mass equation can be rewritten as

$$
\begin{align*}
& p_{L}^{2}=G_{I J} p_{L}^{I} p_{L}^{J}=\frac{1}{2 T_{2} U_{2}}\left|\left(k_{1}-U k_{2}\right)-T\left(w^{2}+U w^{1}\right)\right|^{2}  \tag{9}\\
& p_{R}^{2}=G_{I J} p_{R}^{I} p_{R}^{J}=\frac{1}{2 T_{2} U_{2}}\left|\left(k_{1}-U k_{2}\right)-T^{*}\left(w^{2}+U w^{1}\right)\right|^{2} \tag{10}
\end{align*}
$$

Here we defined the Kähler- and complex structure moduli

$$
\begin{align*}
& T=T_{1}+\mathrm{i} T_{2}:=2\left(B_{12}+\mathrm{i} \sqrt{G}\right),  \tag{11}\\
& U=U_{1}+\mathrm{i} U_{2}:=\frac{G_{12}+\mathrm{i} \sqrt{G}}{G_{22}} \tag{12}
\end{align*}
$$

with $G=\operatorname{det} G_{I J}$. Hint: Deduce the $p_{R}^{2}$ result from $p_{L}^{2}$. Use as intermediate step

$$
\begin{aligned}
p_{L}^{2} & =\frac{1}{G}\left(\frac{1}{4}\left(G_{22} k_{1}^{2}+2 G_{12} k_{1} k_{2}+G_{11} k_{2}^{2}\right)\right. \\
& +\left(B_{12} G_{12}-G\right) w_{1} k_{1}-\left(B_{12} G_{12}+G\right) w_{2} k_{2}+B_{12} G_{22} k_{1} w_{2}-B_{12} G_{11} k_{2} w_{1} \\
& \left.+\left(B_{12}^{2}+G\right)\left(G_{11} w_{1}^{2}+2 G_{12} w_{1} w_{2}+G_{22} w_{2}^{2}\right)\right) .
\end{aligned}
$$

3. Show that the string spectrum is invariant under the following transformations:

- Modular Torus Transformation:

$$
\begin{equation*}
U \mapsto \frac{a U+b}{c U+d}, \quad \text { generated by } \quad U \mapsto U+1 \text { and } U \mapsto-\frac{1}{U} \tag{13}
\end{equation*}
$$

- T-Duality:

$$
\begin{equation*}
T \mapsto \frac{a T+b}{c T+d}, \quad \text { generated by } \quad T \mapsto T+1 \text { and } T \mapsto-\frac{1}{T} \tag{14}
\end{equation*}
$$

- Mirror Symmetry: $U \leftrightarrow T$
where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z})$. How do the winding and momentum numbers have to transform?

