Exercises on String Theory I

Prof. Dr. H.P. Nilles
-Home Exercises-
Due 13. December 2011

Exercise 7.1: Differential Forms

Totally antisymmetric lower-index tensors are an important class of tensors, called differential forms. Given such a tensor $A_{\mu_{1} \ldots \mu_{p}}$, antisymmetric in all its indices, the corresponding p-form A_{p} is defined as

$$
A_{p}=\frac{1}{p!} A_{\mu_{1} \ldots \mu_{p}} \mathrm{~d} x^{\mu_{1}} \wedge \mathrm{~d} x^{\mu_{2}} \wedge \cdots \mathrm{~d} x^{\mu_{p}}
$$

Here the wedge product of the basis one-forms is antisymmetric, $\mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}=-\mathrm{d} x^{\nu} \wedge \mathrm{d} x^{\mu}$. The wedge product extends to arbitrary forms,

$$
\begin{aligned}
A_{p} \wedge B_{q} & =\frac{1}{p!} \frac{1}{q!} A_{\mu_{1} \ldots \mu_{p}} B_{\nu_{1} \ldots \nu_{q}} \mathrm{~d} x^{\mu_{1}} \wedge \mathrm{~d} x^{\mu_{2}} \wedge \cdots \mathrm{~d} x^{\mu_{p}} \wedge \mathrm{~d} x^{\nu_{1}} \wedge \mathrm{~d} x^{\mu_{2}} \wedge \cdots \mathrm{~d} x^{\nu_{p}} \\
& =\frac{1}{(p+q)!}\left(A_{p} \wedge B_{q}\right)_{\mu_{1} \ldots \mu_{p+q}} \mathrm{~d} x^{\mu_{1}} \wedge \mathrm{~d} x^{\mu_{2}} \wedge \cdots \mathrm{~d} x^{\mu_{p+q}} .
\end{aligned}
$$

Hence the components of the product form are given by (the square brackets indicate antisymmetrisation)

$$
\left(A_{p} \wedge B_{q}\right)_{\mu_{1} \ldots \mu_{p+q}}=\frac{(p+q)!}{p!q!} A_{\left[\mu_{1} \ldots \mu_{p}\right.} B_{\left.\mu_{p+1} \ldots \mu_{p+q}\right]} .
$$

Clearly, the degree of a form cannot exceed the spacetime dimension.
One reason for the importance of forms is that they allow for a type of derivative which does not require a connection, the exterior derivative d. It increases the degree of the form and act as follows:

$$
\begin{aligned}
\mathrm{d} A_{p} & =\mathrm{d}\left(\frac{1}{p!} A_{\mu_{1} \ldots \mu_{p}} \mathrm{~d} x^{\mu_{1}} \wedge \mathrm{~d} x^{\mu_{2}} \wedge \cdots \mathrm{~d} x^{\mu_{p}}\right) \\
& =\frac{1}{p!} \partial_{\rho} A_{\mu_{1} \ldots \mu_{p}} \mathrm{~d} x^{\rho} \wedge \mathrm{d} x^{\mu_{1}} \wedge \mathrm{~d} x^{\mu_{2}} \wedge \cdots \mathrm{~d} x^{\mu_{p}} .
\end{aligned}
$$

In other words, the components of the resulting $(p+1)$-form are

$$
\left(\mathrm{d} A_{p}\right)_{\mu_{1} \ldots \mu_{p+1}}=(p+1) \partial_{\left[\mu_{1}\right.} A_{\left.\mu_{2} \ldots \mu_{p+1}\right]} .
$$

1. Verify that the result of the exterior derivative is indeed a tensor. Furthermore, show that $\mathrm{d}^{2}=0$ and that the exterior derivative satisfies a Leibniz rule,

$$
\mathrm{d}\left(A_{p} \wedge B_{q}\right)=\mathrm{d} A_{p} \wedge B_{q}+(-1)^{p} A_{p} \wedge \mathrm{~d} B_{q}
$$

(3 credits)
2. How many independent components does a p-form have in d spacetime dimensions? Given a (Lorentzian) metric, we can assign to a p-form A_{p} a $(d-p)$-form $(* A)_{d-p}$ with components

$$
(* A)_{\mu_{1} \ldots \mu_{d-p}}=\frac{1}{p!} \sqrt{-g} \varepsilon_{\mu_{1} \ldots \mu_{d}} g^{\mu_{d-p+1} \nu_{1}} \ldots g^{\mu_{d} \nu_{p}} A_{\nu_{1} \ldots \nu_{p}}
$$

Here $\varepsilon_{\mu_{1} \ldots \mu_{d}}$ is the totally antisymmetric Levi-Civita symbol, $\varepsilon_{012 \ldots d}=1$, and g is the determinant of the metric. Show that this is indeed a tensor. (It suffices to show that $\sqrt{-g} \varepsilon_{\mu_{1} \ldots \mu_{d}}$ is a tensor, the so-called Levi-Civita tensor.) This operation is called Hodge- $*$. Compute the action of $* *$.
(2 credits)
3. Specialise to three-dimensional Euclidean space. Consider a scalar function $\phi(x)$ and a vector field $\vec{u}(x)$ and express the usual operations grad, curl and div in form language. Derive the well-known identities
(a) curl $\operatorname{grad} \phi=0$,
(b) $\operatorname{div} \operatorname{curl} \vec{u}=0$,
(c) Let \vec{v} be another vector field. Express the cross product $\vec{u} \times \vec{v}$ by forms.
4. Show that the volume form V is $V=* 1$. Show further that for two p-forms A_{p} and B_{p}, we have $A \wedge * B=B \wedge * A$.
(2 credits)
5. Consider Stokes' theorem

$$
\int_{V} \mathrm{~d} \omega=\int_{\partial V} \omega,
$$

where ω is a d-form and V is a $d+1$-dimensional domain. What is the meaning of this theorem for $d=0,1,2$?
(3 credits)
Exercise 7.2: Tensor scalar duality and the Stückelberg mass
8 Credits
We first begin with a four dimensional theory of a massless two-form tensor field B_{2}. The action is given by

$$
S=\int H_{3} \wedge * H_{3} \sim \int \mathrm{~d}^{4} x H_{\mu \nu \rho} H^{\mu \nu \rho}
$$

where $H_{3}=\mathrm{d} B_{2}$.

1. What is the gauge symmetry which leaves the action invariant? How many degrees of freedom does B_{2} have?
(2 credits)
2. We can reparametrize the theory by regarding H_{3} as fundamental field. Then we have to enforce $\mathrm{d} H_{3}=0$ using a Lagrange multiplier ϕ. Show that integrating out H_{3} leads to an action for the massless scalar ϕ. What is the symmetry of ϕ ?
3. We go back to the tensor theory and add a Chern-Simons coupling to a $U(1)$ gauge theory, i.e.

$$
\begin{equation*}
S=\int H_{3} \wedge * H_{3}+c B_{2} \wedge F_{2}+F_{2} \wedge * F_{2} \tag{1}
\end{equation*}
$$

with $F_{2}=\mathrm{d} A_{1}$. Repeat the above procedure to eliminate H_{3}. Show that in order to make S gauge invariant, ϕ has to transform as an axion. Show that you can gauge away ϕ to obtain a massive vector boson theory.
(3 credits)

